Open
Close

Эффективный винт для ветрового генератора. Расчет лопастей ветрогенератора Из чего можно сделать лопасти

Изготовление крыльев или лопастей ветрогенератора является наиболее трудной работой у ветроэлектрического агрегата. Обработка лопасти, имеющей винтовую форму, требует внимания и умения производить разметку углов ее сечений, делать приспособления, шаблоны и т. п. Каждый мастер пользуется своими приемами при изготовлении лопасти. Наиболее рациональный прием является тот, который позволяет наиболее точно установить углы заклинения лопасти и правильно обработать профили каждого ее сечения. Мы воспользуемся способом изготовления ветроколеса (пропеллера) малой мощности, предложенным инж. Уткиным-Егоровым.
Материал подбирают из хорошо просушенных досок сосновых, ясеневых, кленовых или липовых. Доски должны быть высокого качества: без сучков, косослоя, синеватости и т. п. На одно ветроколесо требуется 4 доски, размеры которых устанавливают по чертежу пропеллера, принятому к изготовлению. Эти доски обрабатывают фуганком так, чтобы они были совершенно плоскими.
Клейка досок. Обработанные 4 доски склеивают вместе казеиновым клеем (столярный клей не годится, так как он боится сырости). Склеиваемые поверхности досок, обрабатывают крупной шкуркой, чтобы они стали шероховатыми. Состав клея: от 300 до 400 г свежего казеинового клея в порошке насыпают в какую-либо посуду и постепенно вливают в него кипяченую воду, охлажденную до комнатной температуры. При вливании воды необходимо смесь все время помешивать до получения однородной (без комков) массы. Этой массе дают отстояться в течение 10 или 15 мин., а затем снова подливают кипяченую воду, помешивая, и делают массу клея более жидкой. Готовому клею снова дают отстоять и снова перемешивают. Клей на поверхность досок наносят кистью и быстро распределяют его ровным слоем. Эту операцию делают в порядке очередности укладки досок. Смазанные клеем и уложенные одна на другую доски туго стягивают струбцинками или скручивают тросиком с закруткой, с интервалами около 300 мм. Чтобы не повредить поверхности досок, под каждую струбцинку или скрутку подклады-вают тонкие дощечки.
Склеенные и стянутые доски просушивают на протяжении от 36 до 48 час. при нормальной комнатной температуре. Летом сушку надо производить под навесом. В результате всех этих работ получают заготовку ветроколеса.
Изготовление винтовой лопасти. Боковые стороны заготовки обрабатывают фуганком и наносят осевые линии крыльев, так чтобы эти линии пересекали ось вращения ветроколеса. Вообще же эти линии должны проходить на расстоянии 0,39хb от носка лопасти, где b - ее ширина в соответствующем сечении.
Пользуясь чертежом, на котором должны быть приведены все размеры ветрогенератора, наносят на картон контур лопасти и вырезают из него шаблон. Затем накладывают этот шаблон на поверхность заготовки сверху, и снизу так, чтобы его ось и центр точно совпали с осями заготовки, и очерчивают форму лопасти. Обработку боковых сторон заготовки делают, как показано на фиг. 14.

Фиг. 14. Заготовка для двухлопастного ветроколеса.


Дальнейшую обработку делают с помощью шаблонов и контрольной доски (фиг. 15). Для шаблонов нарезают из фанеры толщиной 3 мм прямоугольные заготовки совершенно одинаковых размеров: от 150 до 300 мм высотой и от 200 до 350 мм шириной в зависимости от размеров лопасти. Для больших ветроколес шаблоны надо вырезать из более толстой фанеры. На каждой заготовке проводят точно посредине вертикальную линию, а перпендикулярно ей-горизонтальную на расстоянии 100 мм от нижнего края шаблона. Пересечение этих линий будет центром профилей лопасти. Пользуясь чертежом, наносят на заготовку контуры профилей лопасти дужкой вниз и хордой вверх, располагая шаблон так, чтобы ось профиля точно совпала с вертикальной линией заготовки (фиг. 15). От носка и хвостика профиля проводят горизонтали А и В. Поэтам линиям и контуру профиля делают лобзиком пропилы.


Фиг. 15. Контрольная доска с шаблонами для изготовления лопасти.


В результате получаются разъемные шаблоны с выпиленными контурами профилей каждого сечения лопасти, взятого на определенном расстоянии r от оси вращения ветроколеса. Для крепления шаблонов на контрольной доске делают поперечные бороздки глубиной до 10 мм. В этих бороздках закрепляют нижние части шаблонов так, чтобы горизонтальные линии а - Ь всех шаблонов находились точно на одинаковой высоте по длине лопасти.
Посредине контрольной доски закрепляют болт диаметром от 16 до 20 мм с двумя гайками. Болт должен быть установлен перпендикулярно к доске, что проверяют уровнем или транспортиром с отвесом. После предварительной обработки заготовку ветроколеса одевают на болт так, чтобы дужка лопасти легла на вырез первого шаблона, смазанного по контуру дужки краской. При наложении заготовки на шаблон на ней останется след в сечении лопасти, угол заклинення которого известен. После этого заготовку снимают и по отпечатку делают стамеской и напильником выемку шириной в 10- 15 мм. Потом снова смазывают контур шаблона краской и опять надевают заготовку на болт и прижимают заготовку к крашеной поверхности шаблона. По отпечаткам краски обрабатывают канавку глубже. Таким образом продолжают обработку до тех пор, пока ветроколесо не ляжет плотно на первый шаблон № 1. После этого нижнюю гайку болта подкручивают настолько, чтобы она уперлась в поверхность ступицы ветроколеса.
Затем снимают его и устанавливают второй шаблон № 2 с окрашенным контуром и повторяют работу по пригонке этого сечения лопасти к шаблону и т. д. После обработки дужек всех сечений лопасти, соответствующих шаблонам № 1, 2, 3, 4 и 5, получают 5 поперечных канавок.
Обработав так одну лопасть, приступают к обработке хорд верхней поверхности этой же лопасти, пользуясь в данном случае верхними шаблонами. Проверку правильности обработанных сечений делают установкой верхнего шаблона на нижний. Они должны точно сомкнуться по линии разъема, а контур дужки и хорды лопасти должен по всему профилю совпадать с контуром шаблона. Обработав одну лопасть, отвертывают верхнюю гайку на болте и поворачивают ветроколесо на 180° для обработки второй лопасти на этих же шаблонах.
Обработанное таким образом ветроколесо снимают с контрольной доски и приступают к обработке оставшихся между бороздками необработанных поверхностей. Эту работу, выполняют рубанком, стамеской, напильником, шкуркой и т. п. Окончательную обработку лопастей надо делать очень тщательно, особенно передних закругленных и задних заостренных кромок.
Готовое ветроколесо покрывают горячей олифой или маслом два или три раза, просушивают и затем от двух до трех раз покрывают спиртовым лаком или окрашивают масляной краской. Законченное ветроколесо необходимо отбалансировать. Балансировку производят на точеном стержне, вставленном во втулку ветроколеса. Стержень должен лежать точно по горизонтали на острых опорах. Лопасти винта при этом должны уравновешиваться, не перетягивая друг друга. Точного равновесия достигают малым смещением втулки в ступице ветроколеса в ту или иную сторону от первоначальной ее оси. После балансировки втулку прочно закрепляют болтами в найденном для нее положении.
Из описанного выше способа изготовления ветрогенератора мы видим, что самой трудной задачей является получение необходимых углов φ заклинения, придающих лопасти винтовую форму. Закрутка лопасти затрудняет ее продольную обработку, установку шаблонов на контрольной доске и т. п. Поэтому, кому трудно будет изготовить винтовую лопасть, мы рекомендуем сделать упрощенную лопасть с постоянным углом заклинения φ по всей длине лопасти. В этом случае коэффициент использования энергии ветра снизится от 5 до 10%, т. е вместо ξ = 0,35, мы будем иметь ξ=0,25, но зато изготовить эти лопасти будет значительно проще. При изготовлении спрямленной лопасти потребуется изготовить только 2 крайних шаблона № 1 и № 5. Промежуточные профили сечений лопасти получатся сами собой при продольной обработке, так как все линии от профиля первого сечения идут к профилю в пятом сечении по прямой. При этом угол φ и в первом и в пятом сечении должен быть равен 5°. Координаты профиля первого и пятого сечений даны в табл. 4 и 5. Эти координаты можно сохранить и для спрямленной лопасти. Размеры ветроколеса диаметром 1,2 м даны на фиг. 15а.

Спрямленную лопасть для других размеров можно делать также с постоянным углом заклинения φ = 5°, а координаты профилей № 1 и № 5 определять с помощью табл. 4.
Надо заметить, что с увеличением угла заклинения лопасти будет снижаться быстроходность и повышаться момент ветроколеса. Увеличение угла до 10-12° можно делать у агрегатов с редуктором.

Приходится , опираясь на экспериментальные результаты или отрывочные сведения, почерпнутые из разных источников. Рассмотрим важный вопрос, возникающий при создании ветряка - устройство лопастей.

Как работает простой ветрогенератор?

Существует два типа ветрогенераторов:

  • горизонтальные
  • вертикальные

Разница состоит в расположении оси вращения. Наиболее производительными считаются , напоминающие своими формами самолет с пропеллером. Винт - это крыльчатка ветряка, хвост - устройство наведения на поток ветра, автоматически разворачивающее ось по направлению движения воздуха.

При воздействии ветра на крыльчатку возникает вращающий момент, передающийся на ось генератора. В его обмотках возбуждается электроток, который заряжает . Они, в свою очередь, отдают заряд на инвертор, изменяющий параметры тока и выдающий на потребляющие приборы стандартное напряжение 220 В 50 Гц.

Существуют более простые комплексы, где с генератора запитываются сразу потребители, но такая система никак не защищена от скачков или пропадания напряжения. Вариант используется только для освещения или привода насосов, качающих воду.

Какая форма лопасти является оптимальной?

Основной элемент горизонтального ветряка - крыльчатка . Она больше всего напоминает пропеллер, хотя выполняет абсолютно противоположные функции. принимают на себя энергию воздушного потока, перерабатывая ее во вращательное движение. От их конфигурации напрямую зависит эффективность работы крыльчатки и всего комплекта в целом.

Горизонтальные устройства имеют крыльчатки, снабженные большим количеством лопастей. Обычно их больше 3. В этом вопросе существует зависимость числа лопастей от производительности. Дело в том, что с возрастанием числа принимающих плоскостей падает мощность крыльчатки, а с убыванием - чувствительность. Поэтому выбирают «золотую середину», принимая среднее число лопастей.

Важно! Большое число лопастей увеличивает фронтальную нагрузку на устройство, создавая опрокидывающее усилие на основании мачты и сильное осевое давление на крыльчатку, разрушающее подшипники генератора.

На практике создано большое количество разных устройств, имеющих форму крыльчатки от простых секторов окружности, немного развернутых по радиусной оси, до сложных вариантов с тщательно просчитанной аэродинамикой, испытанных в разных условиях. Результаты испытаний показали, что оптимальной формой является модель, приближенная к пропеллеру. Такая лопасть несколько расширяется от центра (обтекателя) крыльчатки и плавно сужается к концу.

Преимуществом этого вида является равномерное распределение нагрузок на опорный подшипник, поверхность лопасти и всю систему ветряка в целом. Поток ветра воздействует на все участки с одинаковой силой, но, если расширить лопасть к концу, то получится достаточно длинный рычаг, перегружающий подшипник и выламывающий лопасти. Отсюда возникла такая форма, с небольшими изменениями используемая практически на всех ветряках.

Выбор вида

Вариантов или видов лопастей для горизонтальных ветряков существует немного. Причина этого кроется в самой конструкции крыльчатки - создавать сложные формы или конфигурации там попросту негде. Тем не менее, разработки наиболее удачного варианта ведутся постоянно, на сегодня можно выделить несколько видов:

  • твердолопастные крыльчатки

Твердые лопасти изготавливаются из различных материалов сразу в определенной форме, парусные имеют совершенно другую конструкцию. Основой является рамка, на которую натягивается плотное полотно таким образом, чтобы одна из сторон была не прикреплена к рамке. Получается лопасть треугольной формы с одной стороной (от центра к одной из вершин), не закрепленной к основе.

Поток ветра создает давление на парус и придает ему оптимальную форму для схода с плоскости, в результате чего колесо начинает вращаться. Вариант имеет преимущество в массе и весе колеса, но нуждается в постоянном наблюдении за состоянием ткани и крыльчатки в целом.

Для самостоятельного изготовления обычно используют подручные материалы. Учитывая сложный профиль лопастей, хорошим вариантом становится использование листового металла или пластиковых труб.

Расчет лопастей

На практике мало кто вычисляет параметры лопастей, поскольку для этого надо обладать специальной подготовкой и располагать данными. Большинство значений, нужных для расчетов, необходимо сначала отыскать, некоторые из них и вовсе будут известны только после запуска ветряка. Кроме того, для большинства видов до сих пор нет математической модели вращения, что делает расчеты бесполезными.

Чаще всего производится подбор диаметра крыльчатки по требующейся мощности, выполняемый по таблице:

Как вариант, можно использовать онлайн-калькулятор , позволяющий получить готовый результат за секунды, надо только подставить в окошечки программы собственные данные.

Необходимо учитывать, что расчеты такого устройства, как крыльчатка, не будут иметь достаточной точности из-за большого количества тонких эффектов и неизвестных величин, поэтому, чаще всего, прибегают к экспериментальному подбору формы и размера.

Материал для изготовления

Прежде, чем начать работы по созданию крыльчатки , надо определиться с материалом. Выбор производится из того, что имеется в наличии, или из материалов, более знакомых пользователю и доступных для обработки. Требования к материалу для изготовления лопастей:

  • прочность
  • малый вес
  • легкость обработки
  • возможность придания нужной формы или наличие ее у заготовки
  • доступность

Из всех возможных вариантов опытным путем были выделены несколько наиболее удачных. Рассмотрим их подробнее.

Трубы ПВХ

Использование канализационных труб ПВХ большого диаметра позволяет быстро и недорого получить вполне качественные лопасти. Пластик не боится воздействия влаги, легко обрабатывается. Самым ценным качеством является наличие у заготовки формы ровного желоба, остается лишь правильно отрезать все лишнее.

Простота изготовления и дешевизна материала в сочетании с эксплуатационными качествами пластика сделали трубы ПВХ самым ходовым материалом при изготовлении самодельных ветряков. К недостаткам материала можно отнести его хрупкость при низких температурах.

Алюминий

Лопасти из алюминия долговечны, прочны и не боятся никаких внешних воздействий . При этом, они тяжелее, чем пластиковые и требуют тщательной балансировки колеса. Кроме того, работа с металлом, даже таким податливым, как алюминий, требует наличия навыков и подходящего инструмента.

Затрудняет работу и форма материала - чаще всего используется листовой алюминий, поэтому мало изготовить лопасти, надо придать им соответствующий профиль, для чего придется сделать специальный шаблон. Как вариант, можно сначала изогнуть лист по оправке, затем приступить к разметке и резке деталей. В целом, материал более устойчив к нагрузкам, не боится температурных или погодных воздействий.

Стекловолокно

Такой выбор - для специалистов. Работа со стекловолокном сложна, требует навыков и знания множества тонкостей. Порядок создания лопасти включает в себя несколько операций:

  • изготовление деревянного шаблона, покрытие его поверхности воском, мастикой или иным материалом, отталкивающим клей
  • изготовление одной половины лопасти. На поверхность шаблона наносится слой эпоксидки, на который тут же укладывается стеклоткань. Затем снова наносится эпоксидка (не дожидаясь засыхания предыдущего слоя) и опять стеклоткань. Таким образом создается одна половина лопасти нужной толщины
  • подобным образом изготавливается вторая половина лопасти
  • после застывания клея половинки соединяются при помощи эпоксидки. Стыки зашлифовываются, в торец вставляется втулка для присоединения к ступице

Технология сложна, требует времени и умения работать с материалами. Кроме того, эпоксидная смола имеет неприятное свойство закипать в больших объемах, что создает постоянную угрозу испортить всю работу. Поэтому выбирать стеклоткань следует только опытным и подготовленным пользователям.

Древесина

Работа с деревом достаточно хорошо знакома для большинства пользователей, но создание лопастей - задача достаточно сложная. Мало того, что форма изделия сама по себе непроста, так еще и потребуется изготовить несколько одинаковых неотличимых друг от друга образцов.

Решение такой задачи по плечу далеко не всем. Кроме того, готовые изделия надо качественно защитить от воздействия влаги, пропитать олифой или маслом, покрасить и т.д.

Древесина обладает массой отрицательных качеств - она склонна к короблению, растрескиванию, гниению. Впитывает и легко отдает влагу, что изменяет массу и баланс крыльчатки. Все эти свойства делают материал не лучшим вариантом выбора для домашнего мастера, поскольку лишние осложнения никому не нужны.

Создание лопастей поэтапно

Рассмотрим наиболее распространенный вариант изготовления лопастей. В качестве материала используется труба ПВХ диаметром порядка 110-160 мм:

  • отрезаются куски трубы по длине лопастей
  • вдоль отрезка наносится линия, от которой в обе стороны отмеряются 22 мм. Получится 44 мм - ширина одной лопасти
  • с противоположного торца делается то же самое
  • крайние точки с одной стороны центральной линии соединяются по прямой. Со второй стороны наносится рисунок формы лопасти
  • вырезается лопасть, свободный конец аккуратно закругляется, кромки обрабатываются наждачной бумагой или напильником
  • лопасти присоединяются к ступице

Форма лопастей имеет следующее строение:

  • торцевые части одинаковы по ширине - 44 мм
  • посередине ширина лопасти составляет 55 мм
  • на расстоянии 0,15 длины ширина лопасти составляет 88 мм

Использование альтернативных источников энергии – один из основных трендов нашего времени. Чистая и доступная энергия ветра может преобразовываться в электричество даже у вас дома, если построить ветряк и соединить его с генератором.

Соорудить лопасти для ветрогенератора своими руками можно из обычных материалов, не используя специального оборудования. Мы расскажем, какая форма лопастей эффективнее, и поможем подобрать подходящий чертеж для ветровой электростанции.

Ветрогенератор – прибор, позволяющий преобразовывать энергию ветра в электричество.

Принцип работы его заключается в том, что ветер вращает лопасти, приводит в движение вал, по которому вращение поступает на генератор через редуктор, увеличивающий скорость.

Работа ветряной электростанции оценивается по КИЭВ – коэффициенту использования энергии ветра. Когда ветроколесо вращается быстро, оно взаимодействует с большим количеством ветра, а значит забирает у него большее количество энергии

Подразделяют две основные разновидности ветряных генераторов:

  • горизонтальные.

Вертикально ориентированные модели построены так, чтобы ось пропеллера была расположена перпендикулярно земле. Таким образом, любое перемещение воздушных масс, независимо от направления, приводит конструкцию в движение.

Такая универсальность является плюсом данного типа ветряков, но они проигрывают горизонтальным моделям по производительности и эффективности работы

Горизонтальный ветрогенератор напоминает флюгер. Чтобы лопасти вращались, конструкция должна быть повернута в нужную сторону, в зависимости от направления движения воздуха.

Для контроля и улавливания изменений направления ветра устанавливают специальные приборы. КПД при таком расположении винта значительно выше, чем при вертикальной ориентации. В бытовом применении рациональней использовать ветрогенераторы этого типа.

Какая форма лопасти является оптимальной?

Один из главных элементов ветрогенератора – комплект лопастей.

Существует ряд факторов, связанных с этими деталями, которые сказываются на эффективности ветряка:

  • размер;
  • форма;
  • материал;
  • количество.

Если вы решили сконструировать лопасти для самодельного ветряка, обязательно нужно учитывать все эти параметры. Некоторые полагают, что чем больше крыльев на винте генератора, тем больше энергии ветра можно получить. Другими словами, чем больше, тем лучше.

Однако это далеко не так. Каждая отдельная часть движется, преодолевая сопротивление воздуха. Таким образом, большое количество лопастей на винте требует большей силы ветра для совершения одного оборота.

Кроме того, слишком много широких крыльев могут стать причиной образования так называемой «воздушной шапки» перед винтом, когда воздушный поток не проходит сквозь ветряк, а огибает его.

Форма имеет большое значение. От нее зависит скорость движения винта. Плохое обтекание становится причиной возникновения вихрей, которые тормозят ветроколесо

Самым эффективным является однолопастной ветрогенератор. Но построить и сбалансировать его своими руками очень сложно. Конструкция получается ненадежная, хоть и с высоким коэффициентом полезного действия. По опыту многих пользователей и производителей ветряков, самой оптимальной моделью является трехлопастная.

Вес лопасти зависит от ее размера и материала, из которого она будет изготовлена. Размер нужно подбирать тщательно, руководствуясь формулами для расчетов. Кромки лучше обрабатывать так, чтобы с одной стороны имелось закругление, а противоположная сторона была острой

Правильно подобранная форма лопасти для ветрогенератора является фундаментом его хорошей работы.

Для домашнего изготовления подходят такие варианты:

  • парусного типа;
  • крыльчатого типа.

Лопасти парусного типа представляют собой простые широкие полосы, как на ветряной мельнице. Эта модель наиболее очевидна и проста в изготовлении. Однако ее КПД настолько мал, что эта форма практически не применяется в современных ветрогенераторах. Коэффициент полезного действия в данном случае составляет около 10-12%.

Гораздо более эффективная форма – лопасти крыльчатого профиля. Здесь задействованы принципы аэродинамики, которые поднимают в воздух огромные самолеты. Винт такой формы легче приводится в движение и вращается быстрее. Обтекание воздухом значительно сокращает сопротивление, которое встречает на своем пути ветряк.

Правильный профиль должен напоминать крыло самолета. С одной стороны лопасть имеет утолщение, а с другой – пологий спуск. Воздушные массы обтекают деталь такой формы очень плавно

КПД этой модели достигает значения 30-35%. Хорошая новость заключается в том, что построить крыльчатую лопасть можно и своими руками с применением минимума инструментов. Все основные расчеты и чертежи можно легко адаптировать под свой ветряк и пользоваться бесплатной и чистой энергией ветра без ограничений.

Из чего делают лопасти в домашних условиях?

Материалы, которые подойдут для строительства ветрогенератора – это, прежде всего, пластик, легкие металлы, древесина и современное решение – стеклоткань. Главный вопрос заключается в том, сколько труда и времени вы готовы потратить на изготовление ветряка.

Канализационные трубы из поливинилхлорида

Самый популярный и широко распространенный материал для изготовления пластиковых лопастей для ветрогенератора является обыкновенная канализационная ПВХ-труба. Для большинства домашних генераторов с диаметром винта до 2 м хватит трубы 160 мм.

К преимуществам такого метода относят:

  • невысокую цену;
  • доступность в любом регионе;
  • простоту работы;
  • большое количество схем и чертежей в интернете, большой опыт использования.

Трубы бывают разными. Это известно не только тем, кто изготавливает самодельные ветряные электростанции, но всем, кто сталкивался с монтажом канализации или водопровода. Они отличаются по толщине, составу, производителю. Труба стоит недорого, поэтому не нужно пытаться еще больше удешевить свой ветряк, экономя на ПВХ-трубах.

Некачественный материал пластиковых труб может привести к тому, что лопасти треснут при первом же испытании и вся работа будет проделана впустую

Сначала нужно определиться с лекалом. Вариантов существует много, каждая форма имеет свои недостатки и преимущества. Возможно, имеет смысл сначала поэкспериментировать, прежде чем вырезать итоговый вариант.

Поскольку цена на трубы невысокая, а найти их можно в любом строительном магазине, этот материал отлично подойдет для первых шагов в моделировании лопастей. Если что-то пойдет не так, всегда можно купить еще одну трубу и попробовать сначала, кошелек от таких экспериментов не сильно пострадает.

Опытные пользователи энергии ветра заметили, что для изготовления лопастей для ветрогенератора лучше использовать оранжевые, а не серые трубы. Они лучше держат форму, не изгибаются после формирования крыла и дольше служат

Конструкторы-любители предпочитают ПВХ, так как во время испытаний сломанную лопасть можно заменить на новую, изготовленную за 15 минут прямо на месте при наличии подходящего лекала. Просто и быстро, а главное – доступно.

Алюминий – тонкий, легкий и дорогой

Алюминий – легкий и прочный металл. Его традиционно используют для изготовления лопастей для ветрогенераторов. Благодаря небольшому весу, если придать пластине нужную форму, аэродинамические свойства винта будут на высоте.

Основные нагрузки, которые испытывает ветряк во время вращения, направлены на изгиб и разрыв лопасти. Если пластик при такой работе быстро даст трещину и выйдет из строя, рассчитывать на алюминиевый винт можно гораздо дольше.

Однако если сравнивать алюминий и ПВХ-трубы, металлические пластины все равно будут тяжелее. При высокой скорости вращения велик риск повредить не саму лопасть, а винт в месте крепления

Еще один минус деталей из алюминия – сложность изготовления. Если ПВХ-труба имеет изгиб, который будет использован для придания аэродинамических свойств лопасти, то алюминий, как правило, берется в виде листа.

После вырезания детали по лекалу, что само по себе гораздо сложнее, чем работа с пластиком, полученную заготовку еще нужно будет прокатать и придать ей правильный изгиб. В домашних условиях и без инструмента сделать это будет не так просто.

Стекловолокно или стеклоткань – для профессионалов

Если вы решили подойти к вопросу создания лопасти осознанно и готовы потратить на это много сил и нервов, подойдет стекловолокно. Если ранее вы не имели дела с ветрогенераторами, начинать знакомство с моделирования ветряка из стеклоткани – не лучшая идея. Все-таки этот процесс требует опыта и практических навыков.

Лопасть из нескольких слоев стеклоткани, скрепленных эпоксидным клеем, будет прочной, легкой и надежной. При большой площади поверхности деталь получается полая и практически невесомая

Для изготовления берется стеклоткань – тонкий и прочный материал, который выпускается в рулонах. Помимо стекловолокна пригодится эпоксидный клей для закрепления слоев.

Начинают работу с создания матрицы. Это такая заготовка, которая представляет собой форму для будущей детали.


Матрица может быть изготовлена из дерева: бруса, доски или бревна. Прямо из массива вырубают объемный силуэт половины лопасти. Еще вариант – форма из пластика

Сделать заготовку самостоятельно очень сложно, нужно иметь перед глазами готовую модель лопасти из дерева или другого материала, а только потом по этой модели вырезают матрицу для детали. Таких матриц нужно как минимум 2. Зато, сделав удачную форму однажды, ее можно применять многократно и соорудить таким образом не один ветряк.

Дно формы тщательно смазывают воском. Это делается для того, чтобы готовую лопасть можно было легко извлечь впоследствии. Укладывают слой стекловолокна, промазывают его эпоксидным клеем. Процесс повторяют несколько раз, пока заготовка не достигнет нужной толщины.


Когда эпоксидный клей высохнет, половину детали аккуратно вынимают из матрицы. То же делают со второй половиной. Части склеивают между собой, чтобы получилась полая объемная деталь. Легкая, прочная, правильной аэродинамической формы лопасть из стекловолокна – вершина мастерства домашнего любителя ветряных электростанций.

Ее главный минус – сложность реализации задумки и большое количество брака на первых порах, пока не будет получена идеальная матрица, а алгоритм создания не будет отточен.

Дешево и сердито: деревянная деталь для ветроколеса

Деревянная лопасть – дедовский метод, который легко осуществим, но малоэффективен при сегодняшнем уровне потребления электричества. Сделать деталь можно из цельной доски легких пород древесины, например, сосны. Важно подобрать хорошо высушенную деревянную заготовку.

Нужно выбрать подходящую форму, но учитывать тот факт, что деревянная лопасть будет не тонкой пластиной, как алюминиевая или пластиковая, а объемной конструкцией. Поэтому придать заготовке форму мало, нужно понимать принципы аэродинамики и представлять себе очертания лопасти во всех трех измерениях.

Придавать окончательный вид дереву придется рубанком, лучше электро. Для долговечности древесину обрабатывают антисептическим защитным лаком или краской

Главный недостаток такой конструкции – большой вес винта. Чтобы сдвинуть с места эту махину, ветер должен быть достаточно сильным, что трудноосуществимо в принципе. Однако дерево – доступный материал. Доски, подходящие для создания винта ветрогенератора, можно найти прямо у себя во дворе, не потратив ни копейки. И это главное преимущество древесины в данном случае.

КПД деревянной лопасти стремится к нулю. Как правило, время и силы, которые уходят на создание такого ветряка не стоят полученного результата, выраженного в ваттах. Однако, как учебная модель или пробный экземпляр деревянная деталь вполне имеет место быть. А еще флюгер с деревянными лопастями эффектно смотрится на участке.

Чертежи и примеры лопастей

Сделать правильный расчет винта ветрогенератора, не зная основных параметров, которые отображаются в формуле, а так же не имея понятия, как эти параметры влияют на работу ветряка, очень сложно.

Лучше не тратить свое время, если желания вникать в основы аэродинамики нет. Готовые чертежи-схемы с заданными показателями помогут подобрать подходящую лопасть для ветряной электростанции.

Чертеж лопасти для двухлопастного винта. Изготавливается из канализационной трубы 110 диаметра. Диаметр винта ветряка в данных расчетах – 1 м

Подобный небольшой ветрогенератор не сможет обеспечить вас высокой мощностью. Скорей всего, вы вряд ли сможете выжать из этой конструкции больше 50 Вт. Однако двухлопастной винт из легкой и тонкой ПВХ-трубы даст высокую скорость вращения и обеспечит работу ветряка даже при небольшом ветре.

Чертеж лопасти для трехлопастного винта ветрогенератора из трубы 160 мм диаметра. Расчетная быстроходность в этом варианте – 5 при ветре 5 м/с

Трехлопастной винт такой формы может быть использован для более мощных агрегатов, примерно 150 Вт при 12 В. Диаметр всего винта в этой модели достигает 1,5 м. Ветроколесо будет вращаться быстро и легко запускаться в движение. Ветряк с тремя крыльями встречается в домашних электростанциях чаще всего.

Чертеж самодельной лопасти для 5-ти лопастного винта ветрогенератора. Изготавливается из трубы ПВХ диаметром 160 мм. Расчетная быстроходность – 4

Такой пятилопастной винт сможет выдавать до 225 оборотов в минуту при расчетной скорости ветра 5 м/с. Чтобы построить лопасть по предложенным чертежам, нужно перенести координаты каждой точки из колонок «Координаты лекала фронт/тыл» на поверхность пластиковой канализационной трубы.

По таблице видно, что чем больше крыльев у ветрогенератора, тем меньше должна быть их длина для получения тока одинаковой мощности

Как показывает практика, обслуживать ветрогенератор больше 2 метров в диаметре достаточно сложно. Если в соответствии с таблицей вам необходим ветряк большего размера, подумайте над увеличением числа лопастей.

С правилами и принципами ознакомит статья, в которой пошагово изложен процесс производства вычислений.

Выполнение балансировки ветряка

Балансировка лопастей ветрогенератора поможет сделать его работу максимально эффективной. Для осуществления балансировки нужно найти помещение, где нет ветра или сквозняка. Разумеется, для ветроколеса больше 2 м в диаметре найти такое помещение будет сложно.

Лопасти собираются в готовую конструкцию и устанавливаются в рабочее положение. Ось должна располагаться строго горизонтально, по уровню. Плоскость, в которой будет вращаться винт, должна быть выставлена строго вертикально, перпендикулярно оси и уровню земли.

Винт, который не движется, нужно повернуть на 360/х градусов, где х = количество лопастей. В идеале сбалансированный ветряк не будет отклоняться ни на 1 градус, а останется неподвижным. Если лопасть повернулась под собственным весом, ее нужно немного подправить, уменьшить вес с одной стороны, устранить отклонение от оси.

Процесс повторяется до тех пор, пока винт не будет абсолютно неподвижным в любом положении. Важно, чтобы во время балансировки не было ветра. Это может исказить результаты испытаний

Также важно проконтролировать, чтобы все части вертелись строго в одной плоскости. Для проверки на расстоянии 2 мм с обеих сторон одной из лопастей устанавливают контрольные пластины. Во время движения ни одна часть винта не должна коснуться пластины.

Для эксплуатации ветрогенератора с изготовленными лопастями потребуется собрать систему, аккумулирующую полученную энергию, сохраняющую ее и передающую потребителю. Одним из компонентов системы является контроллер. О том, как сделать , узнаете, ознакомившись с рекомендованной нами статьей.

Если вы хотите использовать чистую и безопасную энергию ветра для бытовых нужд и не планируете тратить огромные деньги на покупку дорогостоящего оборудования, самодельные лопасти из обычных материалов будут подходящей идеей. Не бойтесь экспериментов, и вам удастся еще больше усовершенствовать существующие модели винтов ветряка.


В последнее время все большую популярность приобретает использование в качестве альтернативного источника энергии ветрогенераторов, в том числе самодельных. Ветрогенератор состоит из турбины, флюгера и ветряного колеса. Укрепляется вся конструкция на достаточной высоте над землей – на крыше здания либо специальной мачте. Если собрать эффективный генератор в домашних условиях довольно затруднительно, то изготовить лопасти для ветряного колеса электрогенератора из подручных материалов своими руками под силу большинству домашних умельцев.


Давайте рассмотрим подробнее процесс изготовления лопастей ветрогенератора. Прежде всего, необходимо определиться с мощностью мини электростанции. От этого базового показателя будет завесить диаметр ветряного колеса и количество лопастей. Зависимость диаметра колеса от потребной мощности при заданном числе лопастей приведены в таблице ниже. Данные актуальны для средней скорости ветра 4 м/с.


Как видно из таблицы, практически осуществимым собственными силами является строительство ветрогенератора мощностью примерно до ста Ватт.

Определившись с мощностью будущей энергоустановки, необходимо выбрать материал изготовления и профиль лопастей ветрогенератора.

Самым очевидным решением представляется лопасть парусного типа, то есть плоский профиль на подобие «крыльев» ветряных мельниц. Такие лопасти чрезвычайно просты в изготовлении и могут быть без труда сделаны из любого достаточно прочного материала – жести, фанеры, пластика и т.д. Однако самое очевидное решение далеко не всегда самое оптимальное. Дело в том, что во вращении ветряного колеса с лопастями парусного типа не задействованы аэродинамические силы, вращение осуществляется только за счет давления ветрового потока. Эффективность такой конструкции крайне низкая, коэффициент использования энергии ветра (КИЭВ) не превышает 0,1-0,12, то есть в энергию преобразуется не более 10-12% энергии потока ветра. Скорее всего, при слабом ветре такое колесо не сможет вращать само себя, не говоря уже о выработке энергии в количестве, приемлемом для практического использования.

Гораздо более приемлемый вариант – ветряное колесо с лопастями, так называемого крыльчатого профиля. Внутренняя и внешняя стороны такой лопасти имеют разную площадь, благодаря чему создается разница давления воздуха на противоположные стороны крыла. Полученная аэродинамическая сила делает использование ветрового потока гораздо более эффективным, КИЭВ достигает 0,3-0,4.

Лопасти из ПВХ трубы

Не менее важным является выбор материала для изготовления лопастей ветрогенератора. Проще всего изготовить лопасти ветрогенератора из пластиковой трубы. ПВХ трубы, которые можно приобрести в любом строительном магазине – пожалуй, самый подходящий материал. Необходимо использовать трубы, обладающие необходимой толщиной стенки (предназначенные для канализации или напорного газопровода), иначе набегающий поток воздуха при достаточно сильном ветре может изогнуть лопасти, что приведет к разрушению их о мачту генератора.


Следует помнить, что лопасть ветрогенератора испытывает немалые нагрузки от центробежной силы, тем большие, чем длиннее лопасть. Скорость движения конечной части лопасти двухлопастного колеса бытового ветрогенератора исчисляется сотнями метров в секунду, что сопоставимо со скоростью пистолетной пули (оконечность лопасти колеса промышленного ветрогенератора может достигать сверхзвуковых скоростей).

Лопасть из ПВХ может не выдержать нагрузки на разрыв при столь высоких скоростях, а разлетающаяся со скоростью пули шрапнель осколков представляет реальную угрозу жизни и здоровью людей. Вывод очевиден – уменьшаем длину лопасти за счет увеличения количества лопастей. Кроме того, ветряное колесо с большим числом лопастей значительно проще в балансировке и создает меньше шума.

Рассмотрим изготовление лопастей для шестилопастного ветряного колеса диаметром 2 м из ПВХ трубы. Для обеспечения необходимой прочности на разрыв и изгиб толщина стенки трубы должна быть не менее 4 мм. Расчет профиля лопастей колеса ветрогенератора – сложный и трудоемкий процесс, требующий узкоспециальных знаний, поэтому для мастера-любителя рациональнее будет воспользоваться готовым шаблоном.

Шаблон нужно вырезать из бумаги, приложить к стенке трубы и обвести маркером. Повторить процедуру еще пять раз – из одной трубы должно получиться шесть лопастей. Разрезаем электролобзиком трубу по полученным линиям и получаем шесть почти готовых лопастей. Остается только зашлифовать места разрезов и округлить углы и края. Это придаст ветряному колесу аккуратный вид и снизит шумность работы.

Для соединения лопастей между собой и присоединения колеса к турбине нужно изготовить соединительный узел, представляющий вырезанный из стали диск с приваренными либо вырезанными заодно шестью стальными полосками. Конкретные размеры и конфигурация соединительного узла зависят от генератора либо двигателя постоянного тока, который будет служить сердцем ветряной мини электростанции. Укажем только, что сталь, из которой изготавливается соединительный узел, должна быть достаточной толщины, для того, чтобы колесо не гнулось под напором ветра.

Лопасти из алюминия

Другим вариантом лопастей ветряного колеса бытового ветрогенератора являются лопасти из алюминия. Такие лопасти обладают лучшими прочностными характеристиками относительно лопастей из ПВХ как на разрыв, так и на изгиб. Однако такие лопасти обладают большей массой, что предъявляет дополнительные требования к прочности конструкции в целом. Также более точной должна быть балансировка колеса.


Сначала, по заданным размерам изготавливается лекало из фанеры. По лекалу из алюминиевого листа вырезается шесть заготовок будущих лопастей. Заготовка прокатывается в желоб глубиной 10 мм таким образом, чтобы ось прокрутки составляла угол 10 градусов с продольной осью заготовки. Это делается для придания лопасти нужных аэродинамических характеристик. К внутреннему торцу лопасти приваривается крепежная втулка с нарезанной резьбой

Конструкция соединительного узла колеса с алюминиевыми лопастями несколько отличается от аналогичного узла колеса из ПВХ. К стальному диску привариваются не полоски, а шпильки в виде отрезков стального прута с резьбой, соответствующей резьбе втулок.

Лопасти из стекловолокна

Наиболее совершенными как по отношению прочность/масса, так и по аэродинамическим характеристикам являются лопасти для ветряного колеса, изготовленные из стекловолокна, точнее из сотканной из стекловолокна стеклоткани. Но следует учесть, что изготовление таких лопастей является наиболее трудоемким из приведенных вариантов, требует особых навыков и опыта работы с деревом и стеклотканью.

Самым сложным этапом сборки стеклопластиковых лопастей является изготовление деревянной матрицы . Матрица представляет готовый прообраз будущей лопасти, вытачивается из деревянного бруса по шаблонам.

После того, как матрица готова, можно приступать к изготовлению лопастей. Каждая лопасть будет состоять из двух половинок. Сначала матрицу необходимо тщательно натереть воском. Потом с одной стороны матрицы наносится слой эпоксидной смолы, на который укладывается лист стеклоткани. Далее сразу же, не дожидаясь застывания, наносится снова слой эпоксидной смолы, и снова слой стеклоткани. Таким образом наносятся 3-4 пары слоев. Не снимая с матрицы, оставляем полученную слоеную конструкцию высыхать около суток. После высыхания мы получили половину будущей лопасти. Операция повторяется с другой стороны матрицы.

Половинки лопастей склеиваются между собой эпоксидной смолой, во внутренний торец вклеивается деревянная пробка, которая будет служить для укрепления лопасти к ступице колеса. В пробку врезается втулка с резьбой. Ступицей служит соединительный узел, аналогичный тому, который мы рассматривали в предыдущем примере.

Балансировка ветряного колеса

После того, как лопасти для ветрогенератора сделаны, необходимо собрать колесо и провести его балансировку . Балансировка ветряного колеса производится в закрытом, достаточно просторном помещении. Важно чтобы воздух в помещении, которое будет служить балансировочным «полигоном» был достаточно неподвижен: движение колеса под действием движения воздуха может повлиять на результаты балансировки.


Балансировка ветряного колеса производится следующим образом. Колесо подвешивается в рабочее положение на достаточной высоте так, чтобы ничего не препятствовало свободному вращению колеса. Плоскость соединительного узла колеса была строго параллельна вертикальному подвесу. Останавливаем колесо до полной неподвижности и отпускаем. Колесо должно остаться неподвижным. Проворачиваем колесо вручную примерно на угол, равный 360/число лопастей, останавливаем, отпускаем и снова повторяем наблюдение. Повторяем до полного поворота колеса вокруг своей оси. Если остановленное и отпущенное колесо начинает самопроизвольно вращаться, значит, та часть колеса, которая стремится вниз, тяжелее. Нужно облегчить его, сточив край одной из лопастей.

Другое испытание на том же стенде покажет, все ли лопасти «укладываются» в плоскость вращения колеса. Для этого колесо полностью останавливается и с двух сторон одной из лопастей помещаются две не препятствующие вращению планки на расстоянии 2 мм от лопасти. При вращении колеса лопасти не должны задевать контрольные планки.

Как вы могли убедиться, ничего невыполнимого в собственноручной сборке ветряного колеса нет. Надеюсь, советы из этой статьи были вам полезны. Пробуйте разные варианты, экспериментируйте, и все у вас получится. Удачи!

С давних пор человечество использует силу ветра в своих целях. Ветряные мельницы, парусные корабли знакомы многим, про них пишут в книгах и снимают исторические фильмы. В наше время ветряной электрогенератор не потерял свою актуальность, т.к. с его помощью можно получить бесплатное электричество на даче, которое может пригодиться, если отключат свет. Поговорим о самодельных ветряках, которые можно собрать из подручных материалов и доступных деталей с минимумом затрат. Для вас мы предоставили одну подробную инструкцию с картинками, а также видео идеи еще нескольких вариантов сборки. Итак, давайте рассмотрим, как сделать ветрогенератор своими руками в домашних условиях.

Инструкция по сборке

Существуют несколько типов ветряных установок, а именно – горизонтальный, вертикальный и турбина. У них есть принципиальные различия, свои плюсы и минусы. Однако принцип работы всех ветрогенераторов одинаков - энергия ветра преобразуется в электрическую и накапливается в аккумуляторах, а уже с них уходит на нужды человека. Самый распространенный вид - это горизонтальный.

Он знаком и узнаваем. Преимущество горизонтального ветрогенератора - более высокий КПД по сравнению с другими, так как лопасти ветряка всегда находятся под действием воздушного потока. К недостаткам можно отнести высокое требование к ветру – он должен быть сильнее 5 метров в секунду. Этот тип ветряка сделать проще всего, поэтому его часто берут за основу домашние мастера.

Если вы решили попробовать свои силы в сборке ветрогенератора своими руками, вот несколько рекомендаций.

Начинать нужно с генератора - это сердце системы, от его параметров будет зависеть конструкция винтового узла. Для этого подойдут автомобильные генераторы отечественного и импортного производства, есть сведения о использовании шаговых двигателей от принтеров или прочей оргтехники. Велосипедное мотор-колесо также можно использовать, чтобы самому сделать ветряк для получения электричества. В целом, может подойти практический любой мотор или генератор, однако его обязательно необходимо проверить на эффективность.

Определившись с преобразователем энергии, нужно собрать редукторный узел для повышения оборотов на валу генератора. Один оборот пропеллера должен равняться 4-5 оборотам на валу генераторного узла. Однако эти параметры подбираются индивидуально, исходя из мощности и особенностей вашего генератора и лопастного узла. В качестве редуктора может выступать деталь от болгарки или система ремней и роликов.

Когда собран узел редуктор-генератор, приступают к выяснению его сопротивления крутящему моменту (грамм на миллиметр). Для этого нужно сделать плечо с противовесом на валу будущей установки, и с помощью груза выяснить при каком весе плечо пойдет вниз. Приемлемым результатом считается менее 200 грамм на метр. Размер плеча в этом случае принимается за длину лопасти.

Многие думают, что чем больше лопастей, тем лучше. Это не совсем верно. Нам нужны большие обороты, а много винтов создают большее сопротивление ветру, так как изготавливаем мы их в домашних условиях, в результате чего в какой-то момент набегающий поток тормозит винт и КПД установки падает. Вы можете использовать двухлопастной винт. Такой пропеллер при нормальном ветре может раскрутиться более 1000 оборотов в минуту. Сделать лопасти самодельного ветрогенератора можно из подручных средств - от фанеры и оцинковки, до пластика от водопроводных труб (как на фото ниже). Главное условие – материал должен быть легким и прочным.

Легкий винт повысит КПД ветряка и чувствительность к воздушному потоку. Не забудьте сбалансировать воздушное колесо и убрать неровности, иначе во время работы генератора будете слушать завывание и вой, а вибрации приведут к быстрому износу деталей.

Следующий важный элемент, это хвост. Он будет держать колесо в потоке ветра, и поворачивать конструкцию в случае изменения его направления.

Делать токосъемник или нет, решать вам. Это усложнит конструкцию, однако избавит от частых скручиваний провода, что чревато обрывами кабеля. Конечно, при его отсутствии вам придется иногда самостоятельно раскручивать провод. Во время пробного запуска ветрогенератора не забудьте о технике безопасности, крутящиеся лопасти представляют большую опасность.

Настроенный и сбалансированный ветряк устанавливают на мачту, высотой не ниже 7 метров от земли, закрепленную распорными тросами. Далее не менее важный узел — накопительный аккумулятор. Чаще всего используют автомобильный кислотный аккумулятор. Подключать выход самодельного ветрогенератора непосредственно к батарее нельзя, это нужно сделать через реле зарядки или контроллер, который можно собрать самому или же приобрести готовый.

Принцип работы реле сводится к контролю за зарядом и нагрузкой. В случае полного заряда батареи, оно переключает генератор и аккумулятор на нагрузочный балласт, система стремится всегда быть заряженной, не допуская перезаряда, и не оставляет генератор без нагрузки. Ветряк без нагрузки может достаточно сильно раскрутиться и повредить выработанным потенциалом изоляцию в обмотках. К тому же высокие обороты могут стать причиной механического разрушения элементов ветряного генератора. Далее стоит преобразователь напряжения с 12 на 220 вольт 50 Гц для подключения бытовых приборов.

Сейчас в интернете полно схем и чертежей, где мастера показывают, как сделать ветрогенератор на мощных магнитах самостоятельно. Настолько ли они эффективны, как обещают – вопрос спорный. Но попробовать собрать ветряную электрогенерирующую установку для дома стоит, а потом решить, как ее улучшить. Важно получить опыт и тогда уже можно замахнуться на более серьезный аппарат. Свобода и многообразие самодельных ветряков настолько обширна, а элементная база разнообразна, что нет смысла описывать их все, основной смысл остался тем же - поток ветра раскручивает винт, редуктор повышает обороты вала, генератор выдает напряжение, далее контроллер держит уровень заряда на аккумуляторе, а с него уже идет отбор энергии для различных нужд. Вот по такому принципу можно сделать ветрогенератор своими руками в домашних условиях. Надеемся, наша подробная инструкция с фото примерами разъяснила вам, как изготовить подходящую модель ветряка для дома или дачи. Также рекомендуем ознакомиться с мастер-классами по сборке самодельного устройства в видео формате.

Наглядные видеоуроки

Чтобы легко сделать ветрогенератор для получения электричества в домашних условиях, рекомендуем ознакомиться с готовыми идеями на видео примерах:

Вот мы и предоставили все наиболее простые и доступные идеи сборки самодельного ветряка. Как вы видите, некоторые модели устройств сможет легко изготовить даже ребенок. Существует множество других вариантов самоделок: на мощных магнитах, со сложными лопастями и т.д. Эти конструкции стоит повторять только при наличии некоторого опыта в этом деле, начинать следует с простых схем. Если вы хотите сделать ветрогенератор, чтобы он работал и использовался по назначению, действуйте согласно предоставленной нами инструкции. Если у вас остались вопросы – оставляйте их в комментариях.