Open
Close

Гидравлический расчет и уклон канализационной трубы. Гидравлический расчет самотечных трубопроводов Расчитаем пропускную способность трубы с помощью онлайн калькулятора

Выберем сечение 1-1 по свободной поверхности жидкости в резервуаре А, сечение 2-2 - по свободной поверхности жидкости в резервуаре В (рис. 7). Плоскость сравнения совместим с сечением 2-2.

Рисунок 7 - Схема к расчету диаметра самотечного трубопровода

Составим уравнение Бернулли для сечений 1-1 и 2-2:

В данном случае:

Так как уровни в резервуарах А и В постоянны, то скоростные напоры и равны нулю.

Подставив все значения в уравнение Бернулли (7.1), получим:

Потери напора:

При установившемся режиме уровни в резервуарах постоянны, тогда расход жидкости через самотечный трубопровод равен. Следовательно, средняя скорость жидкости в самотечном трубопроводе:

Подставляя выражение (7.3) с учетом (7.4) в (7.2), получим:

Решение уравнения (7.5) выполним графоаналитическим методом. Задаваясь значением диаметра самотечного трубопровода, построим график зависимости потребного напора

Число Рейнольдса:

Следовательно, режим течения турбулентный. Тогда коэффициент потерь на трение по длине определяем по формуле Альтшуля:

где: - шероховатость чугунных (бывших в употреблении) труб.

Вычислим по формуле (7.5) величину потребного напора для пропуска расхода при значении диаметра самотечного трубопровода:

Так как полученное значение, то последующие значения диаметра нужно уменьшать.

Проведем аналогичные расчеты для ряда других значений диаметра. Результаты расчетов сведем в таблицу 2.

Таблица 2 - Результаты расчета потребного напора

По данным таблицы 2 строим график зависимости (рис. 8) и по значению определяем диаметр самотечного трубопровода.


Рисунок 8 - График зависимости

По графику получаем.

ПОСТРОЕНИЕ ХАРАКТЕРИСТИКИ СЕТИ

При установившемся режиме работы установки, когда расход в системе трубопровода не изменяется со временем, развиваемый насосом напор равен потребному напору установки

Тогда, согласно формуле (4.2), потребный напор установки:

Давление сети:

Построим характеристику сети, используя зависимости (8.1) и (8.2) и методику определения потерь напора, изложенную в п.2.

Зададимся расходом.

Определим средние скорости, режим течения и коэффициенты сопротивления трения для каждого участка трубопровода.

Для трубопровода всасывающей линии диаметром:

число Рейнольдса:

Следовательно, во всасывающей линии режим течения турбулентный.

Для трубопровода диаметром:

средняя скорость движения жидкости:

число Рейнольдса:

Для трубопровода диаметром:

средняя скорость движения жидкости:

число Рейнольдса:

Следовательно, в трубопроводе диаметром режим течения турбулентный.

Для трубопровода диаметром:

средняя скорость движения жидкости:

число Рейнольдса:

Следовательно, в трубопроводе диаметром режим течения турбулентный.

Потери напора во всасывающей линии

где: - потери напора на трение по длине;

Местные потери напора;

и - соответственно коэффициент сопротивления трения и сумма коэффициентов местных сопротивлений во всасывающей линии.

Определим коэффициент гидравлического сопротивления по формуле Альтшуля:

Для всасывающей линии местные сопротивления:

всасывающая коробка с обратным клапаном с коэффициентом сопротивления;

задвижка (при полном ее открытии).

Получаем:

Вычислим потери напора во всасывающей линии:

Аналогичным образом определим потери напора в нагнетательной линии:

Так как режим течения в нагнетательной линии на всех участках турбулентный, а область гидравлического сопротивления переходная, то коэффициенты сопротивления трения определим по формуле Альтшуля:

Местные сопротивления нагнетательной линии:

два поворотных колена с коэффициентом сопротивления

регулировочный вентиль с коэффициентом сопротивления

поворотное колено с коэффициентом сопротивления

на участке трубопровода диаметром:

поворотное колено с коэффициентом сопротивления

на участке трубопровода диаметром:

поворотное колено с коэффициентом сопротивления

расходомер Вентури с коэффициентом сопротивления

Вычислим потери напора в нагнетательной линии:

Общие потери напора в трубопроводе:


Потребный напор установки:

Давление сети:

Проведем вычисления для других значений расхода. Результаты вычислений сведем в таблицу 3.

напор трубопровод насосный резервуар

Таблица 3 - Результаты расчетов для построения характеристики сети

При движении нефти, давление в ней падает, причем, чем выше скорость движения, тем больше потери давления на единицу длины трубопровода. Если абсолютное давление нефти P при этом достигает значения равного ДНП при данной температуре P S , то в данном месте потока наблюдается интенсивное парообразование и выделение газов, что может привести к кавитационным процессам или нарушению сплошности потока. Течение жидкости в описанном случае может быть самотечным расслоенным или иметь более сложную (пробковую) структуру, в которой порции жидкости чередуются с парогазовыми пузырями.

Самотечное расслоенное течение является разновидностью безнапорного течения, при котором жидкость движется неполным сечением под действием силы тяжести, причём остальная часть сечения трубы занята парами этой жидкости. Участки, на которых возникают указанные течения, называются самотечными. При этом давление в парогазовой полости самотечного участка остаётся практически постоянным и равным ДНП нефти. Стационарные самотечные участки могут существовать только на нисходящих участках трубопровода. Начало каждого самотечного участка, которое всегда совпадает с одной из вершин профиля, называется перевальной точкой, причём таких точек может быть несколько. Однако отметим, что не всегда самая высокая точка трассы является перевальной (см. рис. 5.3).

Рис. 5.3. Перевальной точка и расчетная длина нефтепровода

Из рис. 5.3. видно, что причиной появления самотечных участков может быть снижение расхода в трубопроводе, обусловленное снижением давления в начальном сечении с p н до p н (переход на пониженный режим перекачки). Однако при возврате к прежнему давлению не удаётся достичь прежнего значения расхода, так как образовавшиеся парогазовые скопления создают дополнительное сопротивление, а процесс их растворения продолжается длительное время. Таким образом, возврат к прежнему расходу будет осуществлён в течение достаточно продолжительного периода времени.

Растворения парогазового скопления происходит, если скорость потока достаточна для отрыва и уноса парогазовых пузырьков из нижней части газовой полости вниз по течению, при этом по мере удаления от самотечного участка давление жидкости возрастает и пузырьки схлопываются, вызывая кавитацию. Это может привести к значительной вибрации трубопровода и сопровождается повышенным уровнем шума. При дальнейшем увеличении скорости потока до определённого значения скопление страгивается с места и выносится потоком целиком (единой пробкой) и может достичь резервуара на конечном пункте нефтепровода. Сопровождающий это явление гидравлический удар приводит к повреждению резервуаров и их оборудования.

Наличие самотечных участков приводит к увеличению давления в начале трубопровода, а значит требует более высоких затрат энергии на перекачку. Если продлить линию гидравлического уклона за самотечным участком до начального сечения, то можно определить p н , которое необходимо для перекачки нефти с тем же расходом по трубопроводу тех же длины и диаметра, но без самотечных участков. Из рис. 2.3. видно, что p н < p н .

Перекачку с той же производительностью, но без самотечных участков можно организовать при увеличении давления в конце трубопровода до p Ф . Разница полезного и требуемого давления может быть использована, например, для привода небольшой электростанции (проект такой электростанции разработан для нефтепровода Тихорецк–Новороссийск в районе нефтебазы «Грушовая» ).

При появлении самотечного участка между промежуточными НПС, участки МН до и после перевальной точки перестают быть гидравлически связанными. Если по какой-либо причине производительность участка после перевальной точки возрастет, а на начальном участке будет сохраняться на прежнем уровне, давление на всасывании перекачивающей станции следующей за перевальной точкой начнет снижаться и может достигнуть нижнего допустимого предела.

Повышенное содержание в нефти сернистых соединений может вызвать ускоренное протекание коррозионных процессов на внутренней поверхности стенки трубы над свободной поверхностью жидкости.

При гидравлическом расчете трубопровода с самотечными участками уравнение (5.11) преобразуется к следующему виду

, (5.15)

где L р – расчётная длина МН, за которую принимается расстояние от начального пункта до ближайшей перевальной точки, м;

z =(z П z Н ) – разность геодезических отметок перевальной точки и начального пункта, м;

p y =(P s P a ) – упругость паров нефти, которая может быть как положительной, так и отрицательной, Па. Однако как правило для нефтей (при p y <0) согласно третьим членом в уравнении (5.15) пренебрегают.

Рассмотрим течение жидкости за перевальной точкой (рис. 5.4).

Рис. 5.4. Течение жидкости за перевальной точкой

Линия гидравлического уклона на самотечном участке проходит параллельно профилю трубопровода на расстоянии p y /( g ), откуда следует, что гидравлический уклон на самотечном участке равен тангенсу угла наклона профиля трубопровода к горизонту i =tgα п .

Так как согласно уравнению (5.1)

то скорость движения жидкости на самотечном участке w больше скорости течения жидкости на заполненных участках трубопровода w 0 поскольку при том же расходе площадь S , занятая жидкостью на самотечном участке меньше площади полного сечения трубы S 0 . Отношение указанных площадей

называется степенью заполнения сечения трубопровода, которую в зависимости от отношения гидравлического уклона полностью заполненного участка к гидравлическому уклону самотечного участка

можно определить по одной из следующих аппроксимационных зависимостей, приведённых в таблице 5.3 .

Таблица 5.3

Протяжённость самотечного участка можно определить графически или выразив из уравнения Бернулли для участка AK (см. рис. 5.4)

Геодезическую отметку конца самотечного участка z A можно определить, зная z П и координаты ближайшей точки трассы x и z x , из простых геометрических соотношений

Подставляя уравнение (5.17) в (5.16) и выражая l с.у. получим

. (5.18)

Для нахождения перевальной точки достаточно определить избыточное давление в каждой вершине профиля, начиная с конца: если p <p y , то вершина является началом самотечного участка, с учётом этого находятся избыточные давления в следующих вершинах. Ближайшая к началу нефтепровода вершина, являющаяся началом самотечного участка, и будет перевальной точкой.

Трубопроводы служат руслами, по которым перекачиваются жидкости. Жидкость движется по трубопроводу потому, что её энергия в начале трубопровода больше, чем в конце. Этот перепад энергий создаётся, как правило, насосом, а иногда за счёт разности высот начала и конца трубы. В горной промышленности приходится иметь дело, главным образом, с такими трубопроводами, движение жидкости в которых обусловлено работой насосов.

При расчетах напорных трубопроводов основной задачей является либо определение пропускной способности (расхода), либо потери напора на том или ином участке, равно как и на всей длине, либо диаметра трубопровода на заданных расходе и потерях напора.

В практике трубопроводы делятся на короткие и длинные . К первым относятся все трубопроводы, в которых местные потери напора превышают 5…10% потерь напора по длине. При расчетах таких трубопроводов обязательно учитывают потери напора в местных сопротивлениях. К ним относят, к примеру, маслопроводы объемных передач.

Ко вторым относятся трубопроводы, в которых местные потери меньше 5…10% потерь напора по длине. Их расчет ведется без учета местных потерь. К таким трубопроводам относятся, например, магистральные водоводы, нефтепроводы.

Учитывая гидравлическую схему работы длинных трубопроводов, их можно разделить также на простые и сложные . Простыми называются последовательно соединенные трубопроводы одного или различных сечений, не имеющих никаких ответвлений. К сложным трубопроводам относятся системы труб с одним или несколькими ответвлениями, параллельными ветвями и т.д. К сложным относятся и так называемые кольцевые трубопроводы.

Классификация трубопроводов

1) По материалу стенок труб трубопроводы бывают стальные, чугунные, железобетонные, пластмассовые, асбестоцементные, резиновые шланги и т.д.

2) По роду перекачиваемой жидкости - водопроводы, нефтепроводы, маслопроводы и т.д.

3) По конфигурации:

а) простые - это трубопроводы, не имеющие ответвлений;

б) сложные - это трубопроводы, имеющие хотя бы одно ответвление.



Простой трубопровод постоянного сечения

Рисунок 69 - Схема простого трубопровода постоянного сечения

Пусть простой трубопровод постоянного сечения расположен произвольно в пространстве (рисунок 69), имеет общую длину , диаметр d = сonst и содержит ряд местных сопротивлений, например, задвижку, фильтр и обратный клапан. В начальном сечении 1 - 1 геометрическая высота равна z 1 и избыточное давление p 1 , а в конечном сечении 2- 2 соответственно z 2 и р 2 .

Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна u.

Запишем уравнение Бернулли для сечений 1- 1и 2- 2, считая a 1 = a 2 = 1 (как при турбулентном режиме) и исключая скоростные напоры вследствие равенства скоростей:

(91)

Пьезометрическую высоту, стоящую в левой части уравнения (91) назовем потребным напором

разность высот начала и конца трубопровода обозначим

Тогда уравнение (91):

(92)

Учитывая, что полные потери напора в виде степенной функции расхода можно записать в виде

равенство (92) можно записать:

(93)

где сопротивление трубопровода.

Формулы (92) и (93) являются основными для расчёта простых трубопроводов постоянного сечения.

Самотечный трубопровод

Самотечный трубопровод - это такой простой трубопровод постоянного сечения, движение жидкости по которому происходит лишь за счёт разности высот начала и конца трубопровода (рис. 70).

Рисунок 70 - Схема самотечного трубопровода

Для простого трубопровода постоянного сечения справедливо ранее полученное равенство (92):

(94)

В данном случае

Р 2 = Р атм,

Тогда равенство (94) примет вид:

или после сокращения

(95)

по этому равенству рассчитывается самотечный трубопровод, оно показывает, что весь имеющийся напор идёт на преодоление гидравлических сопротивлений h п.

Учитывая, что равенство (95) запишется:

откуда расход жидкости в самотечном трубопроводе:

где а - сопротивление трубопровода, рассчитывается по полученной выше по формуле:

Сифонный трубопровод

Сифонный трубопровод - это такой простой трубопровод постоянного сечения, часть которого расположена выше питающего его резервуара (рисунок 71).

Для того чтобы сифонный трубопровод начал работать, необходимо его заполнить жидкостью, удалив воздух. Этого можно достигнуть путем повышения временно уровня резервуара (или давления в начале трубы) выше наивысшей точки сифона (уровня z)или путем отсасывания воздуха из сифона в наивысшей точке, благодаря чему под атмосферным давлением на уровнях I - I и II - II трубопровод заполнится жидкостью. Наконец, можно запереть концы сифона и залить его жидкостью через верхнюю точку, где одновременно выпускают заполнявший трубу воздух. После сплошного заполнения сифона жидкостью он начинает работать как обыкновенная труба. Расчетом обычно определяют пропускную способность сифона и предельное значение высоты z.

Так как сифонный трубопровод - это простой трубопровод постоянного сечения, то для него справедлива формула (93):

(96)

Проанализируем эту формулу для сечений I - I и III - III (плоскость сравнения проходит по сечению III - III):

Тогда формула (96) примет вид:

или после сокращений

откуда найдётся расход Q по сифонному трубопроводу:

где а - сопротивление трубопровода, рассчитывается по полученной выше по формуле:

Для определения высоты z , на которую может подняться жидкость в сифонном трубопроводе, составим уравнение Бернулли для сечений I - I и II - II:

(97)

Если плоскость сравнения 0 - 0, совпадает с поверхностью жидкости в резервуаре 1, то z 1 = 0; Р 1 = Р а; u 1 » 0; a I = a II = 1 (принимаем режим движения жидкости турбулентным); z II = z; р II > p н.п. - давление в сечении II - II должно быть больше давления насыщенных паров жидкости p н.п. - давления, при котором жидкость закипает при данной температуре, иначе наблюдается явление кавитации - самовскипания жидкости в замкнутом объёме и образующиеся при этом пузырьки пара приводят к срыву работы сифонного трубопровода.

Сточные воды в канализационной сети должны двигаться с такой скоростью, чтобы из них на трассе не осаждалось твёрдое содержимое. В противном случае оно со временем неизбежно приведёт к заиливанию элементов транспортирования - трубопроводов или лотков.

Но существует и верхний предел скорости потока. Твёрдые частицы в воде, движущейся с большой скоростью, повышают механическое истирание поверхности коллекторов.

Расчётные скорости

Максимальная расчётная скорость - это предельная скорость течения сточных вод в каналах и трубах, при которой материалу коллекторов не наносятся механические повреждения.

Минимальная расчётная скорость (критическая) - наименьшая скорость течения, потребная для предотвращения заиливания труб и коллекторов.

Средняя скорость сточных вод - отношение расхода Q сточных вод в линии к величине её живого сечения ω:

v = Q/ω м/сек.

Скорости течения в различных местах поперечного сечения потока на самом деле неодинаковы. Чем ближе к середине (ядру) потока, тем они больше, чем у дна и стенок. Донная и пристеночная скорости минимальны. Рассчитывать канализационную сеть на донные и пристеночные скорости невозможно из-за высокой сложности таких расчётов. Поэтому базовой величиной, из которой исходят при проектировании, является транспортирующая способность потока. Она определяется через расчётную скорость течения. Главный критерий определения этой скорости - обеспечение самоочищения коллекторов и труб.

Для линий с самотёком нужная скорость обеспечивается правильной величиной уклона. Там, где уклон невозможен, используются канализационные насосы соответствующей мощности.

Расчётная скорость - это скорость протекания сточных вод при расчётных (максимальных) величинах расхода и, соответственно, наполнения. Расчётные скорости должны находиться между предельно допустимыми её величинами в канале - максимальной и минимальной.

За максимальную расчётную скорость движения сточных вод по нормам следует принимать для

  • металлических труб - не более 8 м/сек;
  • неметаллических (железобетонных, бетонных, асбестоцементных, керамических и прочих) - до 4 м/сек.

На величину расчётных самоочищающих каналы и трубы скоростей движения стоков влияют такие параметры как гидравлический радиус или степень наполнения и крупность взвешенных веществ, имеющихся в сточных водах.

Минимальная расчётная скорость течения в трубопроводах не прошедших очистки бытовых и дождевых сточных вод при расчётной величине наполнения указана в соответствующих СНиП.

Если наполнение труб канализационной сети не является расчётным, то скорость их самоочищения vн (индекс «н» означает «незаиливающая») вычисляется по формуле, предложенной профессором Н. Ф. Федоровым:

  • R — гидравлический радиус в м;
  • n - показатель степени корня (3,5 + 0,5R).

Наименьшая расчётная скорость в лотках и трубах для сточных вод осветлённых или очищенных биологическими способами может приниматься равной 0,4 м/сек.

В дюкерах с диаметрами до 800 мм в качестве нижнего предела расчётных скоростей для неосветлённых сточных вод принимается величина 1 м/сек. Для диаметров больше 80 см vн определяется также по формуле Фёдорова.

Сточные воды должны подходить к дюкеру со скоростью не выше расчётной скорости в самом дюкере. При этом нужно соблюдать минимальные величины, которые были указаны выше или вычислены по формуле Фёдорова.

Для того, чтобы коллекторы самоочищались, скорость по пути потока должна постоянно увеличиваться. Необходимые величины скорости задаются уклонами трубопроводов. Минимальные значения уклонов для любых систем канализации при расчётном их наполнении труб с диаметрами:

  • 150 мм - 0,007;
  • 200 мм - 0,005;
  • 1250 мм и выше - 0,0005.

Нагрузка начальных отрезков сети канализации с трубопроводами 200 мм и менее практически никогда не достигает расчётной. Поэтому скорость в них не вычисляется, и они называются безрасчётными.

Для канализационных же трубопроводов с диаметром больше 200 мм нужные минимальные уклоны необходимо рассчитывать с учётом обеспечения скорости течения, гарантирующей самоочищение коллектора. Вполне удовлетворительные результаты даёт для этого простейшая эмпирическая формула:

Здесь диаметр трубы d берётся в мм.

→ Системы водоотведения

Гидравлический расчет самотечных трубопроводов


Расчет самотечных трубопроводов заключается в определении их диаметра (или размеров коллектора, если он имеет не круглую форму), уклона и параметров их работы – наполнения и скорости. Обычно предварительно определяется расход, который является исходным для расчета. Расчет трубопроводов – не только гидравлическая задача. Полученные результаты должны удовлетворять технологическим и экономическим требованиям, о которых будет сказано ниже.

В целях упрощения гидравлических расчетов водоотводящих сетей движение воды в них условно принимается установившимся и равномерным. По поводу расчета самотечных трубопроводов существует две точки зрения.

По формуле (2.7) коэффициент Л (следовательно, и коэффициент С) зависят не только от относительной шероховатости, но и от числа Рейнольдса. Эта формула справедлива для всех трех областей турбулентного режима движения жидкости: областей гладкого, вполне шероховатого трения и переходной области между ними. Исследования показали, что трубопроводы водоотводящих сетей работают в области вполне шероховатого трения. Для возможных условий проектирования расчеты по формулам (2.1) – (2.3) и (2.6) – (2.7) дают практически одинаковые результаты.

Известно, что максимальный расход воды в трубах наблюдается при наполнении h/d= 0,95. Поэтому наполнение, большее этого значения, принимать нецелесообразно. Однако, расчетные наполнения рекомендуется принимать даже меньше этого значения по следующим двум причинам. Во-первых, при определении расчетных расходов не учитывается колебание расходов в пределах часа суток, когда может наблюдаться максимальный расход. А это колебание может быть и в меньшую, и в большую стороны. Во-вторых, вследствие неравномерности движения воды, наполнение в трубопроводе в отдельных местах может быть больше расчетного. В целях исключения подтопления трубопроводов при расчетных условиях наполнение в трубопроводах бытовой водоотводящей сети рекомендуется принимать не более 0,8.

В трубопроводах дождевых сетей (водостоках) полных раздельных систем водоотведения, а также в общесплавных трубопроводах и общесплавных коллекторах полураздельных систем водоотведения при расчетных условиях наполнение рекомендуется принимать равным 1, т. е. полным. Это объясняется тем, что расчетные условия в этих трубопроводах наблюдаются весьма редко – 1 раз в 0,25-10 лет. Таким образом, значительную часть времени эти трубопроводы также будут работать при частичном наполнении.

Содержащиеся в сточных водах нерастворенные примеси способны выпадать в осадок, уменьшать сечение трубопроводов и вызывать их полное засорение. Наиболее сложно транспортируются потоком воды минеральные примеси, обладающие большой плотностью. Транспортирование нерастворенных примесей потоком является следствием его турбулентности. При определенных малых скоростях взвешенные вещества осаждаются на дно и образуют плотный слой осадка. При достижении определенной скорости осадок приходит в движение, образуя слой осадка, имеющий форму непрерывных гряд, которые движутся в направлении потока, но с меньшей скоростью (рис. 2.4). Скорость, соответствующая началу движения осадка, называется размывающей. При дальнейшем увеличении скорости и достижении определенного значения весь осадок взвешивается турбулентным потоком, а трубопровод самоочищается. Скорость, соответствующая этому моменту, называется самоочищающей. Известно также понятие критической скорости. Эта скорость – соответствующая началу осаждения примесей (при уменьшении скорости) или полного самоочищения (при увеличении скорости). Расход сточных вод в водоотводящих сетях изменяется в широких пределах от определенного минимального до известного максимального, который принимается за расчетный. Обеспечить возможность транспортирования всех примесей потоком при любом расходе, в том числе и минимальном, не представляется возможным, так как в этом случае потребовалось бы прокладывать трубопроводы с большими уклонами, а это привело бы к их значительным заглублениям. В настоящее время расчет трубопроводов производится на условии поддержания труб в чистом состоянии при максимальном расчетном расходе. Таком образом, при минимальных расходах в трубопроводах допускаются отложения, но при достижении расчетного расхода трубопроводы должны самоочищаться. Поэтому при расчете широко используется понятие самоочищающая скорость. Это минимальная скорость, которая должна обеспечиваться в водоотводящих сетях при расчетном расходе.

Рис. 2.4. Схема непрерывного передвижения отложений в водоотводящей сети

Профессоры Н. Ф. Федоров и А. М. Курганов минимальную скорость, которую необходимо соблюдать в трубопроводах из условий самоочищения, называют незаиляющей.

Формула (2.11) учитывает крупность песка, который может содержаться в сточной воде. Изменение крупности песка может быть обусловлено видом сточных вод (бытовые, дождевые, производственные), совершенством покрытий проездов, особенностями их содержания и др.

Самоочищающая скорость зависит и от коэффициента шероховатости п, так как важным источником турбулентности потока является шероховатость русла. Если в трубопроводах имеется осадок в виде гряд, то коэффициент и~0,025. Если трубопровод чист, то л~0,014. По формуле (2.11) самоочищающая скорость в первом случае меньше, чем во втором. Первый случай определяет условия самоочищения, а второй – критические условия (условия, исключающие осаждение взвешенных веществ). Формула (2.11) позволяет определять как самоочищающую скорость, так и критическую. Они различны, так как различны шероховатости русел. Но условия турбулентности в описанных двух случаях практически одинаковы.

Содержащиеся в сточных водах песок и другие минеральные примеси являются абразивными материалами, истирающими стенки трубопроводов в результате транспортирования жидкости. При этом интенсивность истирания пропорциональна скорости потока, движущегося в трубе. Поэтому на основании многолетнего опыта эксплуатации водоотводящих сетей установлены максимально допустимые скорости, равные 4 м/с – для неметаллических труб и 8 м/с – для металлических.

Расчет трубопроводов по формулам (2.1) – (2.4) или другим чрезвычайно сложен. Методы решения различных задач по расчету трубопроводов изложены в специальной литературе.

При проектировании водоотводящих сетей требуется выполнять й расчеты большого числа отдельных участков трубопроводов с различными условиями проектирования. Их расчет производится путем применения тех или иных упрощающих приемов, при которых используются разработанные таблицы, графики, номограммы, различные обобщенные параметры и др.

В настоящее время для расчета самотечных трубопроводов используют различные таблицы, к числу которых относятся таблицы А. А. Луки-1 ных и Н. А. Лукиных (Таблицы для гидравлического расчета канализационных сетей и дюкеров по формуле акад. Н. Н. Павловского. – М.: Стройиздат, 1987) и Н. Ф. Федорова и Л. Е. Волкова (Гидравлический расчет канализационных сетей. -Л.: Стройиздат, 1968). Первые составлены по формулам (2.1) – (2.4), вторые -по формулам (2.6) и (2.7).

Значения расхода сточных вод д и скорости их движения v в трубах d=2Q0 мм

В табл. 2.4 приведена краткая выдержка из первых таблиц для трубопровода диаметром 200 мм. Таблицы содержат значения расхода и скорости при различных наполнениях от 0,05 до 1,0 для всех возможных в инженерной практике диаметров и уклонов труб.

При проектировании водоотводящих сетей предварительно определяют расход. Уклон трубопровода принимают с учетом уклона поверхности земли и руководствуясь экономическими соображениями (минимальными объемом земляных работ и стоимости строительства). Расчет трубопроводов по описанным таблицам сводится к подбору диаметра трубопровода, обеспечивающего пропуск расхода при наполнении, соответствующем самоочищающей скорости.

Этот расчет весьма прост и удобен. Однако для него требуются таблицы большого объема, которые издаются отдельными книгами. Они Должны быть «под рукой» у каждого проектировщика. В то же время, изданные таблицы не охватывают всех возможных в инженерной практике Диаметров и уклонов трубопроводов и параметров их работы.

Аналогично ведется расчет по графикам и номограммам. Он требуют кропотливой работы. В инженерной практике ими пользуются реже.