Open
Close

Какие элементы окислители а какие восстановители. Что такое окислитель и как его используют. Стоимость и виды фирм

В ходе урока мы изучим тему «Окислительно-восстановительные реакции». Вы узнаете определение данных реакций, их отличия от реакций других типов. Вспомните, что такое степень окисления, окислитель и восстановитель. Научитесь составлять схемы электронного баланса для окислительно-восстановительных реакций, познакомитесь с классификацией окислительно-восстановительных реакций.

Тема: Окислительно-восстановительные реакции

Урок: Окислительно-восстановительные реакции

Реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными . Изменение степеней окисления происходит из-за перехода электронов от восстановителя к окислителю. - это формальный заряд атома, если считать, что все связи в соединении являются ионными.

Окислитель - это вещество, молекулы или ионы которого принимает электроны. Если элемент является окислителем, его степень окисления понижается.

О 0 2 +4е - → 2О -2 (Окислитель, процесс восстановления)

Процесс приема веществами электронов называется восстановлением . Окислитель в ходе процесса восстанавливается.

Восстановитель - это вещество, молекулы или ионы которого отдают электроны. У восстановителя степень окисления повышается.

S 0 -4е - →S +4 (Восстановитель, процесс окисления)

Процесс отдачи электронов называется . Восстановитель в ходе процесса окисляется.

Пример №1. Получение хлора в лаборатории

В лаборатории хлор получают из перманганата калия и концентрированной соляной кислоты. В колбу Вюрца помещают кристаллы перманганата калия. Закрывают колбу пробкой с капельной воронкой. В воронку наливается соляная кислота. Соляная кислота приливается из капельной воронки. Сразу же начинается энергичное выделение хлора. Через газоотводную трубку хлор постепенно заполняет цилиндр, вытесняя из него воздух. Рис. 1.

Рис. 1

На примере этой реакции рассмотрим, как составлять электронный баланс.

KMnO 4 + HCI = KCI + MnCI 2 + CI 2 + H 2 O

K + Mn +7 O -2 4 + H + CI - = K + CI - + Mn +2 CI - 2 + CI 0 2 + H + 2 O -2

Степени окисления поменяли марганец и хлор.

Mn +7 +5е - = Mn +2 окислитель, процесс восстановление

2 CI - -2е - = CI 0 2 восстановитель, процесс окисление

4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 5 и 2. Это 10. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.

Mn +7 +5е - = Mn +2 2

2 CI - -2е - = CI 0 2 5

2KMnO 4 + ? HCI = ?KCI + 2MnCI 2 + 5CI 2 +? H 2 O

Однако перед формулой соляной кислоты не поставлен коэффициент, так как не все хлоридные ионы участвовали в окислительно-восстановительном процессе. Метод электронного баланса позволяет уравнивать только ионы, участвующие в окислительно-восстановительном процессе. Поэтому нужно уравнять количество ионов, не участвующих в . А именно катионов калия, водорода и хлоридных анионов. В результате получается следующее уравнение:

2KMnO 4 + 16 HCI = 2KCI + 2MnCI 2 + 5CI 2 + 8H 2 O

Пример №2. Взаимодействие меди с концентрированной азотной кислотой. Рис. 2.

В стакан с 10 мл кислоты поместили «медную» монету. Быстро началось выделение бурого газа (особенно эффектно выглядели бурые пузырьки в еще бесцветной жидкости). Все пространство над жидкостью стало бурым, из стакана валили бурые пары. Раствор окрасился в зеленый цвет. Реакция постоянно ускорялась. Примерно через полминуты раствор стал синим, а через две минуты реакция начала замедляться. Монета полностью не растворилась, но сильно потеряла в толщине (ее можно было изогнуть пальцами). Зеленая окраска раствора в начальной стадии реакции обусловлена продуктами восстановления азотной кислоты.

Рис. 2

1. Запишем схему этой реакции:

Cu + HNO 3 = Cu (NO 3) 2 + NO 2 + H 2 O

2. Расставим степени окисления всех элементов в веществах, участвующих в реакции:

Cu 0 + H + N +5 O -2 3 = Cu +2 (N +5 O -2 3) 2 + N +4 O -2 2 + H + 2 O -2

Степени окисления поменяли медь и азот.

3. Составляем схему, отражающую процесс перехода электронов:

N +5 +е - = N +4 окислитель, процесс восстановление

Cu 0 -2е - = Cu +2 восстановитель, процесс окисление

4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 1 и 2. Это 2. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.

N +5 +е - = N +4 2

Cu 0 -2е - = Cu +2 1

5. Переносим коэффициенты в исходную схему и преобразуем уравнение реакции.

Cu + ?HNO 3 = Cu (NO 3) 2 + 2NO 2 + 2H 2 O

Азотная кислота участвует не только в окислительно-восстановительной реакции, поэтому коэффициент сначала не пишется. В результате, окончательно получается следующее уравнение:

Cu + 4HNO 3 = Cu (NO 3) 2 + 2NO 2 + 2H 2 O

Классификация окислительно-восстановительных реакций

1. Межмолекулярные окислительно-восстановительные реакции.

Это реакции, в которых окислителем и восстановителем являются разные вещества.

Н 2 S -2 + Cl 0 2 → S 0 + 2HCl -

2. Внутримолекулярные реакции, в которых окисляющиеся и останавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H + 2 O -2 → 2H 0 2 + O 0 2

3. Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl 0 2 + H 2 O → HCl + O + HCl -

4. Конпропорционирование (Репропорционирование) - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления

Домашнее задание

1. №№1-3 (с. 162) Габриелян О.С. Химия. 11 класс. Базовый уровень. 2-е изд., стер. - М.: Дрофа, 2007. - 220 с.

2. Почему аммиак проявляет только восстановительные свойства, а азотная кислота - только окислительные?

3. Расставьте коэффициенты в уравнении реакции получения азотной кислоты, используя метод электронного баланса: ?NO 2 + ?H 2 O + O 2 = ?HNO 3

Окислительно-восстановительные реакции - это реакции, которые идут с изменением степеней окисления элементов. Степень окисления - это условный заряд атома в молекуле, где все полярные связи считаются ионными.

Восстановление - это процесс присоединения электронов.

Окислитель - это атом, молекула или ион, который принимает электроны и понижает свою степень окисления, т.е. восстанавливается.

Восстановитель - это атом, молекула или ион, который отдаёт электроны и повышает свою степень окисления, т.е. окисляется.

Восстановители: а) металлы - чем меньше потенциал ионизации, тем сильнее восстановительные свойства; б) соединения элементов в низших степенях окисления (NH 3 , H 2 S, HBr, HI и др.), у которых все орбитали заполнены и могут только отдавать электроны.

Окислители: а) неметаллы (F 2 , Cl 2 , Br 2 , O 2 и др.) - чем больше сродство к электрону, тем сильнее окислительные свойства; б) ионы металлов в высоких степенях окисления (Fe 3+ , Sn 4+ , Mn 4+ и др.); в) соединения элементов в высших степенях окисления (KMnO 4 , K 2 Cr 2 O 7 , NaBiO 3 , HNO 3 , H 2 SO 4 (конц.) и др.), у которых уже отданы все валентные электроны и могут быть только окислителями.

Соединения элементов в промежуточных степенях окисления (HNO 2 , H 2 SO 3 , H 2 O 2 и др.) могут проявлять окислительные и восстановительные свойства в зависимости от окислительно-восстановительных свойств второго реагента .

H 2 SO 3 + 2H 2 S = 3S + 3H 2 O

окисл. восст.

H 2 SO 3 + Br 2 + H 2 O = H 2 SO 4 + 2HBr

восст. окисл.

Окислители, принимая электроны, то есть, восстанавливаясь, переходят в восстановленную форму:

F 2 + 2e ® 2F -

окисл. восст.

Восстановители, отдавая электроны, то есть, окисляясь, переходят в окисленную форму:

Na 0 - 1e ® Na +

восст. окисл.

Таким образом, как окислители, так и восстановители существуют в окисленной (с более высокой степенью окисления элемента) и восстановленной (с более низкой степенью окисления элемента) формах. При этом для окислителей более характерен переход из окисленной в восстановленную форму, а для восстановителей характерен переход из восстановленной в окисленную форму. Обратные процессы не характерны, и мы не считаем, например, что F - является восстановителем, а Na + - окислителем.

Равновесие между окисленной и восстановленной формами характеризуется с помощью окислительно-восстановительного потенциала, который зависит от концентраций окисленной и восстановленной форм, реакции среды, температуры и т.д.


E = E o +

где - молярная концентрация окисленной формы;

[Восст.] - молярная концентрация восстановленной формы;

n - число электронов, участвующих в полуреакции;

Е 0 - стандартное значение окислительно-восстановительного потенциала; Е = Е 0 , если [Восст.] = [Ок] = 1 моль/л;

Величины стандартных электродных потенциалов Е 0 приведены в таблицах и характеризуют окислительные и восстановительные свойства соединений: Чем положительнее величина Е 0 , тем сильнее окислительные свойства, и чем отрицательнее значение Е 0 , тем сильнее восстановительные свойства.

Например:

F 2 + 2e ® 2F - Е 0 = 2,87 в - сильный окислитель

Na + + 1e ® Na 0 Е 0 = -2,71 в - сильный восстановитель

(процесс всегда записывается для реакций восстановления).

Поскольку окислительно-восстановительная реакция представляет собой совокупность двух полуреакций, окисления и восстановления, то она характеризуется значением разности стандартных электродных потенциалов окислителя (Е 0 ок) и восстановителя (Е 0 восст) - электродвижущей силой (э.д.с.) DЕ 0:

DЕ 0 = Е 0 ок - Е 0 восст,

Э.д.с. реакции DЕ 0 связана с изменением свободной энергии Гиббса DG: DG = -nFDЕ 0 , а с другой стороны, DG связана с константой равновесия К реакции уравнением DG = -2,3RTlnK.

Из последних двух уравнений следует зависимость между э.д.с. и константой равновесия реакции:

DЕ = (2,3RT/nF)lnK.

Э.д.с. реакции при концентрациях отличных от стандартных (т.е. не равных 1 моль/л) DЕ равна:

DЕ = DЕ 0 - (2,3RT/nF)lgK или DЕ= DЕ 0 - (0,059/n)lgK.

В случае равновесия DG = 0 и следовательно DЕ = 0. Откуда DЕ = (0,059/n)lgK и К = 10 n D Е /0,059 .

Для самопроизвольного протекания реакции должно выполняться требование: DG >1, которым соответствует условие DЕ 0 > 0. Поэтому для определения возможности протекания данной окислительно-восстановительной реакции необходимо вычислить значение DЕ 0 . Если DЕ 0 > 0, реакция идет. Если DЕ 0 < 0, реакция не идет.

Пример 1. Определить возможность протекания реакции

2FeCl 3 + 2KI ® 2FeCl 2 + 2KCl + I 2

Решение: Находим, что окислителем является ион Fe +3 , восстанавливающийся до Fe +2 , а восстановителем - I - , окисляющийся до I 2 . Находим по таблице значения стандартных электродных потенциалов: E 0 (Fe +3 /Fe +2) = 0,77 в и E 0 (I 2 /2I -) = 0,54 в. Вычисляем DЕ 0:

DЕ 0 = Е 0 ок - Е 0 восст = 0,77 - 0,54 = 0,23 в >0.

Реакция возможна, так как DЕ 0 > 0.

Пример 2 . Определить возможность протекания реакции

2 KMnO 4 + 16 HCl ® 2 KCl + 2 MnCl 2 + 5 Cl 2 + 8 H 2 O.

Решение. Находим, что окислителем является перманганат-ион MnO 4 - , переходящий в Mn +2 , а восстановителем - хлорид-ион, переходящий в газообразный хлор Cl 2 . Определяем по таблице их потенциалы: E 0 (MnO 4 - /Mn +2) = 1,51 в и E 0 (Cl 2 /2Cl -) = 1,36 в. Вычисляем

DЕ 0 = Е 0 ок - Е 0 восст = 1,51 - 1,36 = 0,15 в >0.

Реакция возможна, так как DЕ 0 > 0.

Окислителем называется вещество, которые вызывает окисление другого вещества. Вызывая окисление какого-либо вещества, сам окислитель при этом восстанавливается. Наиболее распространенные окислители подразделяются на три типа, перечисленные ниже.

Неметаллические элементы. Такие окислители присоединяют электроны, образуя катионы. Примером окислителя подобного типа является хлор. Он окисляет, например, бромид-ионы. Ионное уравнение полной окислительно-восстановительной реакции, протекающей в этом случае, имеет вид

Таким образом, здесь происходит окисление брома:

При окислении брома сам хлор восстанавливается:

К окислителям подобного типа принадлежат также кислород и бром. Сами они в результате восстанавливаются, и соответствующие восстановительные полуреакции описываются следующими уравнениями:

Катионы. К числу катионов, выступающих в роли окислителей, относятся обычно ионы металлов. Они присоединяют к себе электроны, образуя нейтральные атомы либо молекулы. Приведем два примера:

Проба на окислители

Окислители окрашивают в синий цвет влажную индикаторную бумагу, пропитанную крахмалом и иодидом калня. Это происходит в результате того, что окислитель окисляет иодид-ионы, превращая их в иод:

Свободный иод реагирует с крахмалом, и это приводит к появлению синей окраски.

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается.

Окислительно-восстановительные реакции, или сокращенно ОВР, являются одной из основ предмета химии, так как описывают взаимодействие отдельных химических элементов друг с другом. Как следует из названия данных реакций, в них участвуют как минимум два различных химических вещества одно из которых выступает в качестве окислителя, а другое – восстановителя.

Чтобы научиться правильно определять роль конкретного химического элемента в реакции нужно четко уяснить следующие базовые понятия. Окислением называют процесс отдачи электронов с внешнего электронного слоя химического элемента.

Типичными восстановителями являются металлы и водород: Fe, K, Ca, Cu, Mg, Na, Zn, H). Чем меньше они ионизироаны, тем больше их восстановительные свойства. Например, частично окислившееся железо, отдавшее один электрон и имеющее заряд +1, сможет отдать на один электрон меньше по сравнению с «чистым» железом. Определим окислитель и восстановитель на примере простой реакции взаимодействия взаимодействия натрия с кислородом.

Следовательно, натрий является восстановителем, а кислород окислителем. Для этого надо знать, что такое степень окисления. Научиться определять степень окисления у любого атома в химическом соединении.

Первые — восстановители, вторые — окислители. Кроме того, можно посмотреть, в какой степени окисления находятся элементы (вдруг где-то она минимальная или наоборот максимальная). Химические реакции можно разбить на два типа. К первому типу относятся ионообменные реакции. В них степень окисления элементов, из которых состоят взаимодействующие вещества, остается неизменной.

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИТермины, определения, понятия

Эту группу реакций называют окислительно-восстановительной. В случаях взаимодействия типичных окислителей и восстановителей вы можете сразу определить, что речь идет об окислительно-восстановительной реакции. Например, это взаимодействие щелочных металлов с кислотами или галогенами, процессы горения в кислороде. Аналогично определяете, что степень окисления серы в сульфиде калия (+4). Три атома кислорода забирают 6 электронов, а два атома калия отдают два электрона.

Бесплатная помощь с домашними заданиями

И вы можете сделать вывод, что данная реакция окислительно-восстановительная. Реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными. Изменение степеней окисления происходит из-за перехода электронов от восстановителя к окислителю. Степень окисления – это формальный заряд атома, если считать, что все связи в соединении являются ионными.

При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов

Если элемент является окислителем, его степень окисления понижается. Процесс приема веществами электронов называется восстановлением. Окислитель в ходе процесса восстанавливается. У восстановителя степень окисления повышается.

Восстановитель в ходе процесса окисляется. На примере этой реакции рассмотрим, как составлять электронный баланс. Однако перед формулой соляной кислоты не поставлен коэффициент, так как не все хлоридные ионы участвовали в окислительно-восстановительном процессе. Метод электронного баланса позволяет уравнивать только ионы, участвующие в окислительно-восстановительном процессе.

А именно катионов калия, водорода и хлоридных анионов. В стакан с 10 мл кислоты поместили «медную» монету. Все пространство над жидкостью стало бурым, из стакана валили бурые пары. Раствор окрасился в зеленый цвет. Реакция постоянно ускорялась. Примерно через полминуты раствор стал синим, а через две минуты реакция начала замедляться.

Зеленая окраска раствора в начальной стадии реакции обусловлена продуктами восстановления азотной кислоты. 4. Уравняем число отданных и принятых электронов. При протекании окислительно-восстановительных реакций, конечные продукты зависят от многих факторов.

В нейтральной среде образуется MnO2 и окраска меняется с красно-фиолетовой на коричневую. Это и получение металлов, горение, синтез оксидов серы и азота при производстве кислот, получение аммиака. Привет! Мне интересно, есть ли у Вас какие-либо проблемы с выполнением домашнего задания. У нас есть много людей, которые помогут Вам здесь Кроме того, мой последний вопрос был решен менее чем за 10 минут:D Во всяком случае, Вы можете просто войти и попробовать добавить свой вопрос.

В свою очередь окислителем будет атом, молекула или ион, которые принимают электроны и тем самым понижают степень своего окисления, что есть восстанавливаются. В ходе урока была изучена тема «Окислительно-восстановительные реакции».

окислитель для волос, окислитель thuya
Окисли́тель - вещество, в состав которого входят атомы, присоединяющие во время химической реакции электроны, иными словами, окислитель - это акцептор электронов.

В зависимости от поставленной задачи (окисление в жидкой или в газообразной фазе, окисление на поверхности) в качестве окислителя могут быть использованы самые разные вещества.

  • Электрохимическое окисление позволяет окислять практически любые вещества на аноде, в растворах или в расплавах. Так, самый сильный неорганический окислитель, элементарный фтор, получают электролизом расплавов фторидов.
  • 1 Распространённые окислители и их продукты
  • 2 Мнемонические правила
  • 3 Зависимость степени окисления от концентрации окислителя
  • 4 Сильные окислители
  • 5 Очень сильные окислители
  • 6 См. также

Распространённые окислители и их продукты

Полуреакции Продукт Стандартный потенциал, В
O2 кислород Разные, включая оксиды, H2O и CO2 +1,229 (в кислой среде)

0,401 (в щелочной среде)

O3 озон Разные, включая кетоны и альдегиды
Пероксиды Разные, включая оксиды, окисляет сульфиды металлов до сульфатов H2O
Hal2 галогены Hal−; окисляет металлы, P, C, S, Si до галогенидов F2: +2,87

Cl2: +1,36
Br2: +1,04
I2: +0,536

ClO− гипохлориты Cl−
ClO3− хлораты Cl−
HNO3 азотная кислота с активными металлами, разбавленная

с активными металлами, концентрированная

с тяжёлыми металлами, разбавленная

c тяжёлыми металлами, концентрированная

H2SO4, конц. серная кислота c неметаллами и тяжёлыми металлами

с активными металлами

SO2; окисляет металлы до сульфатов с выделением сернистого газа или серы

Шестивалентный хром Cr3+ +1,33
MnO2 оксид марганца(IV) Mn2+ +1,23
MnO4− перманганаты кислая среда

нейтральная среда

сильнощелочная среда

Mn2+ +1,51
Катионы металлов и H+ Me0 См. Электрохимический ряд активности металлов

Мнемонические правила

Для запоминания свойств окислителей и восстановителей существует несколько мнемонических правил:

  1. Окислитель - грабитель (в процессе окислительно-восстановительной реакции окислитель присоединяет электроны).
  2. Ассоциация со знакомым словом: ПВО - Присоединяет (электроны), Восстанавливается, является Окислителем.
  3. Отдает - окисляется, сам восстановителем является.

Зависимость степени окисления от концентрации окислителя

Чем активнее металл, реагирующий с кислотой, и чем более разбавлен её раствор, тем полнее протекает восстановление. качестве примера - реакция азотной кислоты с цинком:

  • Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2 + 2H2O
  • 3Zn + 8HNO3(40 %) = 3Zn(NO3)2 + 2NO + 4H2O
  • 4Zn + 10HNO3(20 %) = 4Zn(NO3)2 + N2O + 5H2O
  • 5Zn + 12HNO3(6 %) = 5Zn(NO3)2 + N2 + 6H2O
  • 4Zn + 10HNO3(0.5 %) = 4Zn(NO3)2 + NH4NO3 + 3H2O

Сильные окислители

Сильными окислительными свойствами обладает «царская водка» - смесь одного объема азотной кислоты и трёх объёмов соляной кислоты.

HNO3 + 3HCl ↔ NOCl + 2Cl + 2H2O

Образующийся в нём хлористый нитрозил распадается на атомарный хлор и монооксид азота:

Царская водка является сильным окислителем благодаря атомарному хлору, который образуется в растворе. Царская водка окисляет даже благородные металлы - золото и платину.

Ещё один сильный окислитель - перманганат калия. Он способен окислять органические вещества и даже разрывать углеродные цепи:

С6H5-CH2-CH3 + → C6H5COOH + … C6H6 + → HOOC-(CH2)4-COOH

Сила окислителя при реакции в разбавленном водном растворе может быть выражена стандартным электродным потенциалом: чем выше потенциал, тем сильнее окислитель.

Очень сильные окислители

Условно к «очень сильным окислителям» относят вещества, превышающие по окислительной активности молекулярный фтор. К ним, например, относятся: гексафторид платины, диоксидифторид, дифторид криптона, гексафтороникелат(IV) калия. Перечисленные вещества, к примеру, способны при комнатной температуре окислять инертный газ ксенон, что неспособен делать фтор (требуется давление и нагрев) и тем более ни один из кислородсодержащих окислителей.

См. также

  • Окислительно-восстановительные реакции

окислитель thuya, окислитель для волос, окислитель сенко, окислитель это, окислительная башня, окислительное число, окислительные ферменты, окислительный стресс

Окислитель Информацию О