Open
Close

Схему реактивной мощности своими руками. Генератор обратной мощности. Дальнейшие разработки механизма

. Генератор обратной мощности для электросчетчика схема

Генератор реактивной мощности 1 Квт - Конструкции средней сложности - Схемы для начинающих

Генератор реактивной мощности 1 Квт

Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет полностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элементах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Применение других элементов позволяет соответственно увеличить мощность.

Теоретические основы

Принципиальная схема приведена на рис.1. Основными элементами устройства являются интегратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на трансформаторе Tr1. Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол p/2. Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограничивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую развязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1. Логический узел служит для формирования сигналов управления мощным ключевым транзистором Т3 выходного каскада. Алгоритм управления синхронизирован выходными сигналами интегратора. На основе анализа этих сигналов, на выходе 4 элемента DD2.2 формируется сигнал управления выходным каскадом. В необходимые моменты времени логический узел модулирует выходной сигнал сигналом задающего генератора, обеспечивая высокочастотное энергопотребление. Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задающий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обес-печения наибольшей погрешности учета электроэнергии, потребляемой устройством. Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступает на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запира-ние его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное закрытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд. Блок питания построен по классической схеме. Необходимость применения двух каналов питания продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 удается только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизиро-ванное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5- вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

Детали и конструкция

Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада. Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства. Накопительный конденсатор С2 может быть только неполярным. Применение электролитического конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В. Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 - проволочные мощностью не менее 10 Вт; ос-тальные резисторы типа МЛТ-0.25. Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмотками. Напряжение обмотки 2 должно быть 24 - 26 В, напряжение обмотки 3 должно быть 4 - 5 В. Главное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потреб-ления от нее составит не более 50 мА.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе. Применение электролитического (оксидного) конденсатора не допускается! Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления. Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол p/2. Далее проверяют наличие сигналов на выходах ограничителей, подключая ос-циллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол p/2 по оси времени. Допускается нарастание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от p/2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подбирая сопротивления резисторов R5 и R6. Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада. Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21. Логический узел при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы прямоугольной формы, смещенные относительно друг друга по оси времени на угол p/2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, длительность каждой пачки 5 мс. Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный кон-такт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают нагрузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротивление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажига-ния оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА). Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзистора выходного каскада. После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости конденсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения реко-мендуется в несколько этапов, каждый раз проверяя температурный режим. Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется увеличить мощность отмотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого использовать другую схему с выходным каскадом на четырех транзисторах. Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

cxema.my1.ru

Генератор обратной мощности – для чего он необходим

Генератор обратной мощности – для чего он необходим

Немногие, наверное, вспомнят, как раньше отматывали показания счетчика электроэнергии. Делали это трансформатором, который необходимо было заземлить. Заземлителем обычно служила батарея или другая коммуникация. Это было очень опасно для жизни. Теперь же никаких посторонних вмешательств в электрическую проводку и заземляющих проводников. Включил в обычную розетку генератор обратной мощности и жди результата. Обычный электросчетчик с диском – мотает цифры в обратную сторону, современный электронный счетчик – просто останавливается.

Расчет мощности по показаниям электросчетчика

Приборы для учета потребляемой энергии не всегда верно отсчитывают используемую мощность электронных компонентов. Для того, чтобы проверить работу электросчетчика необходимо:

  • иметь возможность осмотреть устройство. Электросчетчик может находиться в квартире или на лестничной площадке;
  • на передней панели указан класс точности прибора – это допустимая величина погрешности в %. Например, если класс точности 3, то устройство за использованный 100Вт/ч посчитает показатель – от 97 до 103 Вт/ч. Это будет нормой рассчитанного электричества для данного счетчика;
  • для проверки работы включите в сеть только одну лампу накаливания на один час, и смотрите за показаниями на электросчетчике.

Если Ваш прибор для учета электроэнергии не оправдал испытания – следует подать заявку на его замену в Энергонадзор.

Как рассчитать мощность электрического тока

Электрический счетчик рассчитывает не потребляемую электронными компонентами мощность, а работу, проделанную электрическим током, а правильнее – израсходованную при этом энергию. Рассчитать мощность электросчетчика можно двумя методами:

  • посчитать количество оборотов за единицу времени и сравнить этот показатель цифрой, указанной на счетчике. Например, если стоит показатель 300 , это значит, что диск прибора совершает 300 оборотов за один час. Значит за 10 минут он должен совершить 50 оборотов;
  • и наоборот: задаем количество оборотов и смотрим, за какое время счетчик проделает эту работу.

Расход электроэнергии

ogodom.ru

Генератор обратной мощности или рекуператор мощностью до 1 кВт. - 16 Февраля 2011

В связи с решением ведущей электрокомпании в нашей стране поднять стоимость киловатта электроэнергии до 10.74 сантима (около 0.2 USD/кВт) с 1 апреля, приходится прибегать к методам, позволяющим снизить показания приборов учёта до разумного минимума. Для этой цели и служат приборы, называемые генераторами обратной мощности или рекуператорами. В поисках на просторах Интернета удалось найти схемы и описания этих устройств, схема и описание одного из них приводится ниже.


Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет полностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элементах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Применение других элементов позволяет соответственно увеличить мощность.

Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся электропроводка остается нетронутой. Заземление не нужно. Теоретические основы

Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик вращается в обратную сторону.

Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заражают от сети импульсами высокой частоты. При определенном значении частоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью, пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то счетчик будет вычитать из нее мощность устройства.

Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых осуществляется полный учет, а в другом – частичный.

Основными элементами устройства являются интегратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на трансформаторе Tr1.

Интегратор предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу логического узла. Это прямоугольные импульсы уровня ТТЛ на входах 1 и 2 элемента DD1.1.

Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол /2.

Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограничивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую развязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1.

Логический узел служит для формирования сигналов управления мощным ключевым транзистором Т3 выходного каскада. Алгоритм управления синхронизирован выходными сигналами интегратора. На основе анализа этих сигналов, на выходе 4 элемента DD2.2 формируется сигнал управления выходным каскадом. В необходимые моменты времени логический узел модулирует выходной сигнал сигналом задающего генератора, обеспечивая высокочастотное энергопотребление. Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задающий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обеспечения наибольшей погрешности учета электроэнергии, потребляемой устройством.

Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступает на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запирание его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное закрытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд.

Блок питания построен по классической схеме. Необходимость применения двух каналов питания продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 удается только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизированное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5-вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

Детали и конструкция

Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада. Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства.

Накопительный конденсатор С2 может быть только неполярным. Применение электролитического конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В. Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 - проволочные мощностью не менее 10 Вт; остальные резисторы типа МЛТ-0.25. Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмотками. Напряжение обмотки 2 должно быть 24 - 26 В, напряжение обмотки 3 должно быть 4 - 5 В. Главное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потребления от нее составит не более 50 мА. Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе.

Применение электролитического (оксидного) конденсатора не допускается!

Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления. Интегратор проверяют двулучевым осциллографом.

Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол /2.

Далее проверяют наличие сигналов на выходах ограничителей, подключая осциллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол /2 по оси времени. Допускается нарастание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от /2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подбирая сопротивления резисторов R5 и R6.

Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада. Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21.

Логический узел при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы прямоугольной формы, смещенные относительно друг друга по оси времени на угол /2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, длительность каждой пачки 5 мс.

Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный контакт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают нагрузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротивление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажигания оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА).

Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзистора выходного каскада.

После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости конденсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения рекомендуется в несколько этапов, каждый раз проверяя температурный режим.

Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А.

Если требуется увеличить мощность отмотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого использовать другую схему с выходным каскадом на четырех транзисторах. Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью.

Это нужно учитывать, чтобы не вывести из строя электропроводку.

Описание этого устройства взято отсюда:

Если кто-нибудь повторит или повторяет данное устройство, то жду ваших отзывов, коментариев и замечаний по работе этого девайса.

А вот здесь - критика принципа работы данного устройства:

yl2gl.ucoz.net

Генератор реактивной мощности 2 кВт CAVR.ru

Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет полностью остановить учет до мощности потребления в несколько кВт. При указанных на схемах элементах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 2 кВт. Применение других элементов позволяет соответственно увеличить мощность.

Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся электропроводка остается нетронутой. Заземление не нужно.

Теоретические основы

Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик вращается в обратную сторону.

Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заражают от сети импульсами высокой частоты. При определенном значении частоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью, пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то счетчик будет вычитать из нее мощность устройства.

Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых осуществляется полный учет, а в другом – частичный.

Принципиальная схема устройства

Устройство состоит из четырех модулей, принципиальные схемы которых приведены на рис.1 - 4.

Рис.1. Интегратор.

Рис.2. Система управления.

Рис.3. Рекуператор.

Рис.4. Блок питания.

Интегратор (рис.1) предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу других модулей. Это прямоугольные импульсы уровня ТТЛ на выходах С1 и С2.

Фронт сигнала С1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала С2 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, сигналы С1 и С2 представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол /2.

Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1.1, R1.3, ограничивается до уровня 5 В с помощью резистора R1.5 и стабилитрона D1.2, затем через узел гальванической развязки на оптроне ОС1.1 подается на другие модули. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1.1.

Система управления (рис.2) служит для формирования сигналов управления мощными ключевыми транзисторами рекуператора (рис.3). Алгоритм управления синхронизирован сигналами С1 и С2, получаемыми с интегратора. Для обеспечения импульсного процесса протекания энергопотребления устройством служит задающий генератор на логических элементах DD2.3.4 и DD2.3.5. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С2.1-R2.1 и C2.2-R2.2. Эти параметры могут подбираться при настройке для обеспечения наибольшей погрешности учета электроэнергии, потребляемой устройством.

Логический блок системы на основе анализа сигналов С1 и С2 формирует сигналы U1 – U4, каждый из которых управляет соответствующим плечом рекуператора. В необходимые моменты времени логический блок модулирует соответствующий выходной сигнал сигналом задающего генератора, обеспечивая высокочастотное энергопотребление.

Рекуператор (рис.3) представляет собой два одинаковых канала, каждый из которых обеспечивает подключение к электрической сети отдельного накопительного конденсатора С3.1 или С3.2. Канал управления конденсатором С3.1 состоит из мощных транзисторов Т3.2, Т3.6, выпрямительных диодов D3.1, D3.3, усилительных каскадов на транзисторах Т3.1, Т3.3 и узлов гальванической развязки от электросети на оптронах ОС3.1, ОС3.3. Канал управления конденсатором С3.2 построен аналогично. За счет алгоритма работы системы управления обеспечивается работа конденсатора С3.1 на положительной полуволне сетевого напряжения, а С3.2 – на отрицательной.

Блок питания (рис.4) построен по классической схеме. Необходимость применения трех каналов питания продиктована особенностью связи каскадов рекуператора с электрической сетью. При этом общим проводом можно лишь условно считать отрицательный полюс 5-вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 3 А на выходах 16 В. Это необходимо для ввода мощных ключевых транзисторов в режим насыщения в открытом состоянии. В противном случае на них будет рассеиваться большая мощность, и они выйдут из строя.

Детали и конструкция

Микросхемы могут применяться любые: 133, 156, 555 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощных ключевых каскадов.

Ключевые транзисторы рекуператора обязательно устанавливаются на радиаторах. Лучше для каждого транзистора использовать отдельный радиатор площадью не менее 150 см2. Для транзисторов Т3.1, Т3.3, Т3.5, Т3.7 необходимы радиаторы площадью не менее 40 см2. Из соображений безопасности не следует использовать металлический корпус устройства в качестве радиатора для транзисторов.

Для всех высоковольтных конденсаторов на схеме обозначено их номинальное напряжение. Конденсаторы на более низкое напряжение применять нельзя. Конденсатор С1.1 может быть только неполярным. В этом узле применение электролитического конденсатора не допускается. Схема рекуператора специально составлена для использования в качестве С3.1 и С3.2 дешевых электролитических конденсаторов, но надежнее и долговечнее всё-таки применение неполярных конденсаторов.

Резисторы: R1.1 – R1.4 типа МЛТ-2; R3.17 - R3.22 проволочные мощностью не менее 10 Вт; остальные резисторы типа МЛТ-0.25.

Трансформатор Tr1 – любой маломощный с двумя раздельными вторичными обмотками на 12 В и одной на 5 В. Главное требование – обеспечить при номинальном напряжении 12 В ток каждой вторичной обмотки не менее 3 А.

Все модули устройства следует смонтировать на отдельных платах для облегчения последующей настройки. Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для транзисторов использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительные конденсаторы работают в предельном режиме, поэтому перед включением устройства их нужно разместить в прочном металлическом корпусе.

Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 3 А на выходах 16 В, а также 5 В для питания системы управления.

Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С2.1, С2.2 или резисторы R2.1, R2.2. Логический блок системы управления при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на выходах U1–U4 есть сигналы прямоугольной формы.

Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1.1 и R1.3, а провод второго канала – к точке соединения R1.2 и R1.4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол /2. Далее проверяют наличие сигналов на выходах С1 и С2. Для этого общий провод осциллографа соединяют с точкой GND устройства. Сигналы должны иметь правильную прямоугольную форму, частоту также 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол /2 по оси времени. Если фазосмещение сигналов отличается от /2, то его корректируют подбирая конденсатор С1.1.

Настройка ключевых элементов рекуператора заключается в установке тока базы транзисторов Т3.2, Т3.4, Т3.6, Т3.8 на уровне не менее 1.5 - 2 А. Это необходимо для насыщения этих транзисторов в открытом состоянии. Для настройки рекомендуется отключить рекуператор от системы управления (выходы U1-U4), и при настройке каждого каскада подавать напряжение +5 В на соответствующий вход рекуператора U1-U4 непосредственно с блока питания. Ток базы устанавливают поочередно для каждого каскада, подбирая сопротивление резисторов R3.19 - R3.22 соответственно. Для этого может потребоваться еще подбор R3.4, R3.8, R3.12, R3.16 для соответствующего каскада. После отключения напряжения на входе ток базы ключевого транзистора должен уменьшаться почти до нуля (несколько мкА).. Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощных ключевых транзисторов.

После настройки всех модулей восстанавливают все соединения в схеме и проверяют работы схемы в сборе. Первое включение рекомендуется выполнить с уменьшенными значениями емкости конденсаторов С3.1, С3.2 приблизительно до 1 мкФ. Конденсаторы лучше использовать неполярные. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевых транзисторов. Если все в порядке – можете устанавливать электролитические конденсаторы. Увеличивать емкость конденсаторов до номинального значения рекомендуется в несколько этапов, каждый раз проверяя температурный режим.

Мощность отмотки непосредственно зависит от емкости конденсаторов С3.1 и С3.2. Для увеличения мощности нужны конденсаторы большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резисторам R3.17 и R3.18. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется еще большая мощность отмотки, придется использовать более мощные транзисторы, а также диоды D3.1-D3.4.

Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1-2 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

www.cavr.ru

Генератор реактивной мощности 1 Квт - Способы экономии электроэнергии - Статьи

Устройство предназначено для отмотки показаний индукционных электросчетчиков без измене-ния их схем включения. Применительно к электронным и электронно-механическим счетчикам, в кон-струкцию которых заложена неспособность к обратному отсчету показаний, устройство позволяет пол-ностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элемен-тах устройство рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Приме-нение других элементов позволяет соответственно увеличить мощность.

Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся электропроводка остается нетронутой. Заземление не нужно.

Теоретические основы

Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик вращается в обратную сторону.

Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заражают от сети импульсами высокой частоты. При определенном значении частоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью, пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то счетчик будет вычитать из нее мощность устройства.

Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых осуществляется полный учет, а в другом – частичный.

Принципиальная схема устройства

Принципиальная схема приведена на рис.1. Основными элементами устройства являются инте-гратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на транс-форматоре Tr1.

Интегратор предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу логического узла. Это прямоугольные импульсы уровня ТТЛ на входах 1 и 2 элемента DD1.1.

Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого на-пряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизиро-ванные сетью и смещенные по фазе относительно друг друга на угол p/2.

Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограни-чивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую раз-вязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда кон-денсатора С1.

Логический узел служит для формирования сигналов управления мощным ключевым транзисто-ром Т3 выходного каскада. Алгоритм управления синхронизирован выходными сигналами интегратора. На основе анализа этих сигналов, на выходе 4 элемента DD2.2 формируется сигнал управления выход-ным каскадом. В необходимые моменты времени логический узел модулирует выходной сигнал сигна-лом задающего генератора, обеспечивая высокочастотное энергопотребление.

Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задаю-щий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц ам-плитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметра-ми времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обес-печения наибольшей погрешности учета электроэнергии, потребляемой устройством.

Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступа-ет на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запира-ние его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное за-крытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд.

Блок питания построен по классической схеме. Необходимость применения двух каналов пита-ния продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 уда-ется только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизиро-ванное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5- вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требова-нием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

Детали и конструкция

Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется приме-нение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада.

Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства.

Накопительный конденсатор С2 может быть только неполярным. Применение электролитическо-го конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В.

Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 - проволочные мощностью не менее 10 Вт; ос-тальные резисторы типа МЛТ-0.25.

Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмот-ками. Напряжение обмотки 2 должно быть 24 - 26 В, напряжение обмотки 3 должно быть 4 - 5 В. Глав-ное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потреб-ления от нее составит не более 50 мА.

Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспира-ции) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком про-шлом широко использовались для питания ламповых телевизоров.

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве ра-диатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе. Применение электролитического (оксидного) конденсатора не допускается!

Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления.

Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа со-единяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол p/2. Далее проверяют наличие сигналов на выходах ограничителей, подключая ос-циллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол p/2 по оси времени. Допускается нарас-тание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от p/2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подби-рая сопротивления резисторов R5 и R6. Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада.

Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21.

Логический узел при условии правильного монтажа наладки не требует. Желательно только убе-диться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы пря-моугольной формы, смещенные относительно друг друга по оси времени на угол p/2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, дли-тельность каждой пачки 5 мс.

Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный кон-такт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают на-грузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротив-ление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажига-ния оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА). Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзи-стора выходного каскада.

После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости кон-денсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения реко-мендуется в несколько этапов, каждый раз проверяя температурный режим.

Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощ-ности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной им-пульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется увеличить мощность от-мотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого ис-пользовать другую схему с выходным каскадом на четырех транзисторах.

Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт впол-не достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычи-тает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощно-стью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

P.S. Не забывайте вовремя выключать устройство. Лучше всегда оставаться в небольшом долгу перед государством. Если вдруг Ваш счетчик покажет, что государство должно Вам, оно этого никогда не простит.

Рис.1. Генератор реактивной мощности 1 кВт. Схема электрическая принципиальная

promka.at.ua

Схему генератора обратной реактивной мощности – 5 квт

Схема генератора a2tc0091 схему генератора обратной реактивной мощности - 5 квт.

Еще раз об электронном способе отмотки электросчетчика мифы и реальность Схема как остановить электросчётчик бесплатно генератор реактивной мощности 1 квт.

Схема включения асинхронного генератора асинхронного двигателя в качестве генератора Аренда бензиновых генераторов и других источников электричества на жидком топливе в.

Компенсация реактивной мощности 115 5 1 8 5 схемы awn 44 47 1250 55587 5 квт ч av Регулятор яркости светильника до 2 квт нижеприведенный регулятор яркости светильника.

Методы схемы выключения остановки и отмотки назад индукционных и электронных счётчиков Электрическая схема это изображение электрической цепи с помощью условных обозначений.

Электрическая схема эсуд ваз-2114

Схема подключения магнитолы ваз 211440

Схема подключения электровентилятора на ваз

Схема металлоискатели на avr

Ваз-11183 схема электропроводки

Генератор hyundai xg схема

gooddies.sytes.net

Способ №38 Генератор реактивной мощности 1 Квт

  1. Барк 100У-068С
  2. Новости
  3. Генератор обратной мощности для электросчетчика схема
Добавлено: 2017-06-28 14:17

Еще видео на тему «Генератор обратной мощности для электросчетчика схема»

А давайте у Борисыча спросим, на гидрогенераторах есть что-нибудь подобное? Как они в двигательном режиме себя чувствуют, если судьба их туда загнала? И какая есть делилка на ГЭС?

Генератор реактивной мощности 1 Квт - Способы экономии

Приведена векторная диаграмма в двигательном режиме с учётом реактивной мощности.не напутано ли в схеме соединения? Векторы Uав и (-Iс) направлены встречно.

Генератор обратной мощности – для чего он необходим

Сергей, тема об обратной активной мощности.Обратная реактивная мощность другая песня, другая защита, другой принцип.

Генератор обратной мощности - в законе? - Конференция

Цифровые генераторы rigol до 6 ггц. До 665 форм сигналов. Универсальные, произв. Все новинки, генератор реактивной мощности 6 квт. Генератор реактивной мощности 6 квт. Устройство предназначено для отмотки показаний - продажа, аренда генераторов. Аренда и продажа дизельных генераторов. Хороший выбор и цены, еще раз об электронном способе. (о так называемом генераторе реактивной или обратной мощности, он же источник. Как отмотать счетчики - генератор обратной - мощность отмотки определяется элементами, используемыми при сборке. Генератор обратной мощности. Генератор обратной мощности. Описание способов экономии электроэнергии, принципиальные.

Коллеги, приглашаю всех желающих посетителей нашего форума принять участие в опросе Где работают релейщики. Спасибо

Вертикальные гидрогенераторы из-за особенностей своей конструкции работают в режиме синхронного компенсатора только совместно с турбиной. Воду из камеры гидротурбины отжимают сжатым воздухом. С этой целью на гидростанциях предусматривают специальную установку со сжатым воздухом. В течение всего периода работы гидрогенератора в режиме синхронного компенсатора в камере поддерживается избыточное давление.См. Внешняя ссылка

Советы бывалого релейщика Релейная защита и автоматика генераторов, двигателей Защита от обратной мощности и от включения на стоящий генератор

Компенсация реактивной мощности 665 5 6 8 5 схемы awn 99 97 6755 55587 5 квт ч av Регулятор яркости светильника до 7 квт нижеприведенный регулятор яркости светильника.

Для того, чтобы контролировать расход электроэнергии, необходимо знать точную цифру, потребляемую Вашими электроприборами. Число, показывающее на используемую мощность, указывается, обычно, в технических характеристиках электроустройства. Зная это число и возможные способы проверки этого показателя, можно контролировать расход электроэнергии. Или приобрести генератор обратной мощности электросчетчика и забыть о расчетах. Однако, следует заметить, что промышленностью выпускаются уже «умные» приборы для учета электричества, которые могут зафиксировать обман. Тогда серьезных проблем с Энергонадзором уже не избежать!

Фундамент под раздвижные ворота длиной 4 метра схема

  • Мостовой выпрямитель схема

  • Схема циркуляционный насос

  • Схема электронный замок

  • Схема электрическая кухни

  • Способ- Генератор реактивной мощности 1 Квт

    Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к
    электронным и электронно-механическим счетчикам, в конструкцию которых заложена неспособность к обратному отсчету показаний,
    устройство позволяет полностью остановить учет до уровня реактивной мощности генератора. При указанных на схеме элементах устройство
    рассчитано на номинальное напряжение сети 220 В и мощность отмотки 1 кВт. Применение других элементов позволяет соответственно
    увеличить мощность.

    Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и счетчик начинает считать в обратную сторону. Вся
    электропроводка остается нетронутой. Заземление не нужно.

    Теоретические основы
    Работа устройства основана на том, что датчики тока электросчетчиков, в том числе и электронных, содержат входной индукционный
    преобразователь, имеющий низкую чувствительность к токам высокой частоты. Этот факт позволяет внести значительную отрицательную
    погрешность в учет, если потребление осуществлять импульсами высокой частоты. Другая особенность – счетчик является реле направления
    мощности, т.е если с помощью какого-либо источника (например дизель-генератора) питать саму электрическую сеть, то счетчик
    вращается в обратную сторону.

    Перечисленные факторы позволяют создать имитатор генератора. Основным элементом такого устройства является конденсатор
    соответствующей емкости. Конденсатор в течение четверти периода сетевого напряжения заряжают от сети импульсами высокой частоты. При
    определенном значении час-тоты (зависит от характеристик входного преобразователя счетчика), счетчик учитывает только четверть от
    фактически потребленной энергии. Во вторую четверть периода конденсатор разряжают обратно в сеть напрямую, без высокочастотной
    коммутации. Счетчик учитывает всю энергию, питающую сеть. Фактически энергия заряда и разряда конденсатора одинакова, но полностью
    учитывается только вторая, создавая имитацию генератора, питающего сеть. Счетчик при этом считает в обратную сторону со скоростью,
    пропорциональной разности в единицу времени энергии разряда и учтенной энергии заряда. Электронный счетчик будет полностью
    остановлен и позволит безучетно потреблять энергию, не более значения энергии разряда. Если мощность потребителя окажется большей, то
    счетчик будет вычитать из нее мощность устройства.

    Фактически устройство приводит к циркуляции реактивной мощности в двух направлениях через счетчик, в одном из которых
    осуществляется полный учет, а в другом – частичный.

    Принципиальная схема устройства

    Рис.1. Генератор реактивной мощности 1 кВт. Схема электрическая принципиальная

    Принципиальная схема приведена на рис.1. Основными элементами устройства являются интегратор, представляющий собой резистивный мост R1-R4 и конденсатор С1, формирователь импульсов (стабилитроны D1, D2 и резисторы R5, R6), логический узел (элементы DD1.1, DD2.1, DD2.2), тактовый генератор (DD2.3, DD2.4), усилитель (Т1, Т2), выходной каскад (С2, Т3, Br1) и блок питания на трансформаторе Tr1.

    Интегратор предназначен для выделения из сетевого напряжения сигналов, синхронизирующих работу логического узла. Это прямоугольные импульсы уровня ТТЛ на входах 1 и 2 элемента DD1.1.

    Фронт сигнала на входе 1 DD1.1 совпадает с началом положительной полуволны сетевого напряжения, а спад – с началом отрицательной полуволны. Фронт сигнала на входе 2 DD1.1 совпадает с началом положительной полуволны интеграла сетевого напряжения, а спад - с началом отрицательной полуволны. Таким образом, эти сигналы представляют собой прямоугольные импульсы, синхронизированные сетью и смещенные по фазе относительно друг друга на угол?/2.

    Сигнал, соответствующий напряжению сети, снимается с резистивного делителя R1, R3, ограничивается до уровня 5 В с помощью резистора R5 и стабилитрона D2, затем через гальваническую раз-вязку на оптроне ОС1 подается на логический узел. Аналогично формируется сигнал, соответствующий интегралу напряжения сети. Процесс интегрирования обеспечивается процессами заряда и разряда конденсатора С1.

    Для обеспечения импульсного процесса заряда накопительного конденсатора С2 служит задающий генератор на логических элементах DD2.3 и DD2.4. Он формирует импульсы частотой 2 кГц амплитудой 5 В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С3-R20 и C4-R21. Эти параметры могут подбираться при настройке для обеспечения наибольшей погрешности учета электроэнергии, потребляемой устройством.

    Сигнал управления выходным каскадом через гальваническую развязку на оптроне ОС3 поступает на вход двухкаскадного усилителя на транзисторах Т1 и Т2. Основное назначение этого усилителя – полное открытие с вводом в режим насыщения транзистора Т3 выходного каскада и надежное запирание его в моменты времени, определяемые логическим узлом. Только ввод в насыщение и полное закрытие позволят транзистору Т3 функционировать в тяжелых условиях работы выходного каскада. Если не обеспечить надежное полное открытие и закрытие Т3, причем за минимальное время, то он выходит из строя от перегрева в течение нескольких секунд.

    Блок питания построен по классической схеме. Необходимость применения двух каналов питания продиктована особенностью режима выходного каскада. Обеспечить надежное открывание Т3 уда-ется только при напряжении питания не менее 12В, а для питания микросхем необходимо стабилизированное напряжение 5В. При этом общим проводом можно лишь условно считать отрицательный полюс 5-ти вольтового выхода. Он не должен заземляться или иметь связь с проводами сети. Главным требованием к блоку питания является возможность обеспечить ток до 2 А на выходе 36 В. Это необходимо для ввода мощного ключевого транзистора выходного каскада в режим насыщения в открытом состоянии. В противном случае на нем будет рассеиваться большая мощность, и он выйдет из строя.

    Детали и конструкция Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощного ключевого каскада.

    Ключевой транзистор Т3 обязательно устанавливается на радиаторе площадью не менее 200 см2. Для транзистора Т2 применяется радиатор площадью не менее 50 см2. Из соображений безопасности в качестве радиаторов не следует использовать металлический корпус устройства.

    Накопительный конденсатор С2 может быть только неполярным. Применение электролитического конденсатора не допускается. Конденсатор должен быть рассчитан на напряжение не менее 400В.

    Резисторы: R1 – R4, R15 типа МЛТ-2; R18, R19 - проволочные мощностью не менее 10 Вт; остальные резисторы типа МЛТ-0.25.

    Трансформатор Tr1 – любой мощностью около 100 Вт с двумя раздельными вторичными обмотками. Напряжение обмотки 2 должно быть 24 - 26 В, напряжение обмотки 3 должно быть 4 - 5 В. Главное требование – обмотка 2 должна быть рассчитана на ток 2 – 3 А. Обмотка 3 маломощная, ток потребления от нее составит не более 50 мА.

    Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров.

    Наладка При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для выходного транзистора использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительный конденсатор работает в предельном режиме, поэтому перед включением устройства его нужно разместить в прочном металлическом корпусе. Применение электролитического (оксидного) конденсатора не допускается!

    Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания системы управления.

    Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1 и R3, а провод второго канала – к точке соединения R2 и R4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол?/2. Далее проверяют наличие сигналов на выходах ограничителей, подключая осциллограф параллельно стабилитронам D1 и D2. Для этого общий провод осциллографа соединяют с точкой N сети. Сигналы должны иметь правильную прямоугольную форму, частоту 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол?/2 по оси времени. Допускается нарастание и спад импульсов в течение не более 1мс. Если фазосмещение сигналов отличается от? /2, то его корректируют подбирая конденсатор С1. Крутизну фронта и спада импульсов можно изменять, подбирая сопротивления резисторов R5 и R6. Эти сопротивления должны быть не менее 8 кОм, в противном случае ограничители уровня сигнала будут оказывать влияние на качество процесса интегрирования, что в итоге будет приводить к перегрузке транзистора выходного каскада.

    Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С3, С4 или резисторы R20, R21.

    Логический узел при условии правильного монтажа наладки не требует. Желательно только убе-диться с помощью осциллографа, что на входах 1 и 2 элемента DD1.1 есть периодические сигналы пря-моугольной формы, смещенные относительно друг друга по оси времени на угол p/2. На выходе 4 DD2.2 должны периодически через каждые 10 мс формироваться пачки импульсов частотой 2 кГц, длительность каждой пачки 5 мс.

    Настройка выходного каскада заключается в установке тока базы транзистора Т3 на уровне не менее 1.5 -2 А. Это необходимо для насыщения этого транзистора в открытом состоянии. Для настройки рекомендуется отключить выходной каскад с усилителем от логического узла (отсоединить резистор R22 от выхода элемента DD2.2), и управлять каскадом подавая напряжение +5 В на отсоединенный контакт резистора R22 непосредственно с блока питания. Вместо конденсатора С1 временно включают на-грузку в виде лампы накаливания мощностью 100 Вт. Ток базы Т3 устанавливают подбирая сопротивление резистора R18. Для этого может потребоваться еще подбор R13 и R15 усилителя. После зажигания оптрона ОС3, ток базы транзистора Т3 должен уменьшаться почти до нуля (несколько мкА). Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощного ключевого транзистора выходного каскада.

    После настройки всех элементов восстанавливают все соединения в схеме и проверяют работу схемы в сборе. Первое включение рекомендуется выполнить с уменьшенным значением емкости конденсатора С2 приблизительно до 1 мкФ. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевого транзистора. Если все в порядке – можете увеличивать емкость конденсатора С2. Увеличивать емкость до номинального значения рекомендуется в несколько этапов, каждый раз проверяя температурный режим.

    Мощность отмотки в первую очередь зависит от емкости конденсатора С2. Для увеличения мощности нужен конденсатор большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резистору R19. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется увеличить мощность отмотки, придется использовать более мощные транзисторы, а также диоды Br1. Но лучше для этого использовать другую схему с выходным каскадом на четырех транзисторах.

    Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

    P.S. Не забывайте вовремя выключать устройство. Лучше всегда оставаться в небольшом долгу перед государством. Если вдруг Ваш счетчик покажет, что государство должно Вам, оно этого никогда не простит.

    Способ Хитрый выпрямитель

    Выпрямитель предназначен для питания бытовых потребителей, которые могут работать как на переменном, так и на постоянном токе. Это например электроплиты, камины, водонагревательные устройства, освещение и т. п. Главное, чтобы в этих устройствах не было электродвигателей, трансформаторов и других элементов, рассчитанных на переменный ток. Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и от него питается нагрузка. Вся электропроводка остается нетронутой. Заземление не нужно. Счетчик при этом учитывает примерно четверть потребленной электроэнергии. Теоретические основы Работа устройства основана на том, что нагрузка питается не непосредственно от сети переменного тока, а от конденсатора, который постоянно заряжен. Естественно, питание нагрузки будет осуществляться постоянным током. Энергия, отданная конденсатором в нагрузку, восполняется через выпрямитель, но заряжается конденсатор не постоянным током, а прерывистым с высокой частотой. Счетчики электроэнергии, в том числе электронные, содержат входной индукционный преобразователь, который имеет низкую чувствительность к токам высокой частоты. Поэтому энергопотребление в виде импульсов учитывается счетчиком с большой отрицательной погрешностью.

    Основными элементами являются силовой выпрямитель Br1, конденсатор C1 и транзисторный ключ T1. Конденсатор С1 заряжается от выпрямителя Br1 через ключ Т1 импульсами с частотой 2 кГц. Напряжение на С1, а также на подключенной параллельно ему нагрузке близко к постоянному. Для ограничения импульсного тока через транзистор Т1 служит резистор R6, включенный последовательно с выпрямителем. На логических элементах DD1, DD2 собран задающий генератор. Он формирует импульсы частотой 2 кГц амплитудой 5В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С2-R7 и C3-R8. Эти параметры могут подбираться при настройке для обеспечения наибольшей погрешности учета электроэнергии. На транзисторах Т2 и Т3 построен формирователь импульсов, предназначенный для управления мощным ключевым транзистором Т1. Формирователь рассчитан таким образом, чтобы Т1 в открытом состоянии входил в режим насыщения и за счет этого на нем рассеивалась меньшая мощность. Естественно, Т1 также должен полностью закрываться. Трансформатор Tr1, выпрямитель Br2 и следующие за ними элементы представляют собой источник питания низковольтной части схемы. Этот источник обеспечивает питанием 36В формирователь импульсов и 5В для питания микросхемы генератора. Детали устройства Микросхема: DD1, DD2 - К155ЛА3. Диоды: Br1 – Д232А; Br2 - Д242Б; D1 – Д226Б. Стабилитрон: D2 – КС156А. Транзисторы: Т1 – КТ848А, Т2 – КТ815В, Т3 – КТ315. Т1 и Т2 устанавливаются на радиаторе площадью не менее 150 см2 . Транзисторы устанавливаются на изолирующих прокладках. Конденсаторы электролитические: С1- 10 мкФ Ч 400В; С4 - 1000 мкФ Ч 50В; С5 - 1000 мкФ Ч 16В; Конденсаторы высокочастотные: С2, С3 – 0.1 мкФ. Резисторы: R1, R2 – 27 кОм; R3 – 56 Ом; R4 – 3 кОм; R5 -22 кОм; R6 – 10 Ом; R7, R8 – 1.5 кОм; R9 – 560 Ом. Резисторы R3, R6 – проволочные мощностью не менее 10 Вт, R9 - типа МЛТ-2, остальные резисторы – МЛТ-0.25. Трансформатор Tr1 – любой маломощный 220/36 В. Наладка При наладке схемы соблюдайте осторожность! Помните, что низковольтная часть схемы не имеет гальванической развязки от электрической сети! Не рекомендуется в качестве радиатора для транзисторов использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Вначале проверяют отдельно от схемы низковольтный блок питания. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания маломощного генератора. Затем налаживают генератор, отключив силовую часть схемы от электросети (для этого можно временно отсоединить резистор R6). Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С2, С3 или резисторы R7, R8.

    Формирователь импульсов на транзисторах Т2 и Т3, если правильно собран, обычно наладки не требует. Но желательно убедиться, что он способен обеспечить импульсный ток базы транзистора Т1 на уровне 1.5 – 2 А. Если такое значение тока не обеспечить, транзистор Т1 не будет в открытом состоянии входить в режим насыщения и сгорит за несколько секунд. Для проверки этого режима можно при отключенной силовой части схемы и отключенной базе транзистора Т1, вместо резистора R1 включить шунт сопротивлением в несколько Ом. Импульсное напряжение на шунте при включенном генераторе регистрируют осциллографом и пересчитывают на значение тока. При необходимости подбирают сопротивления резисторов R2, R3 и R4. Следующей стадией является проверка силовой части. Для этого восстанавливают все соединения в схеме. Конденсатор С1 временно отключают, а в качестве нагрузки используют потребитель малой мощности, например лампу накаливания мощностью до 100 Вт. При включении устройства в электрическую сеть действующее значение напряжения на нагрузке должно быть на уровне 100 – 130 В. Осциллограммы напряжения на нагрузке и на резисторе R6 должны показать, что питание её производится импульсами с частотой, задаваемой генератором.

    Если всё исправно, подключают конденсатор С1, только вначале емкость его принимают в несколько раз меньше номинальной (например 0.1 мкФ). Действующее напряжение на на-грузке заметно возрастает и при последующем увеличении емкости С1 достигает 310 В. При этом очень важно внимательно следить за температурой транзистора Т1. Если возникает повы-шенный нагрев при использовании маломощной нагрузки, это свидетельствует о том, что Т1 либо не входит в режим насыщения в открытом состоянии, либо полностью не закрывается. В этом случае следует вернуться к настройке формирователя импульсов. Эксперименты показы-вают, что при питании нагрузки мощностью 100 Вт без конденсатора С1, транзистор Т1 в течение длительного времени не нагревается даже без радиатора.

    В заключении подключается номинальная нагрузка и подбирается емкость С1 такая, чтобы обеспечить питание нагрузки постоянным напряжением 220 В. Емкость С1 следует под-бирать осторожно, начиная с малых значений, так как увеличение емкости приводит к увеличению выходного напряжения (до 310 В, что может вывести из строя нагрузку), а также резко увеличивает импульсный ток через транзистор Т1. Об амплитуде импульсов тока через Т1 можно судить, подключив осциллограф параллельно резистору R6. Импульсный ток должен быть не более допустимого для выбранного транзистора (20 А для КТ848А). В случае необходимости его ограничивают, увеличивая сопротивление R6, но лучше остановиться на меньшем значении емкости С1. При указанных деталях устройство рассчитано на нагрузку 1 кВт. Применяя другие элементы силового выпрямителя и транзисторный ключ соответствующей мощности, можно питать и более мощные потребители. Обращаем Ваше внимание на то, что при изменении нагрузки, напряжение на ней также будет существенно изменяться. Поэтому устройство целесообразно настроить и использовать постоянно с одним и тем же потребителем. Этот недостаток в определенных случаях может оказаться достоинством. Например, изменяя емкость С1можно в широких пределах регулировать мощность нагревательных приборов. Схема устройства приведена на рис.1. Способ Электронный.

    Краткое описание: Способ предназначен для отмотки или торможения электросчетчиков. Устройство представляет собой электронную схему средней сложности. Для использования достаточно включить устройство в обычную, любую розетку, при этом диск старых счетчиков (СО2, СО-И446...) будет вращаться назад, а современные в т.ч. электронные остановятся. Возможно применение прибора одновременно с другими токоприемниками. Скорость отмотки 1.5 - 2.0 КВт час. Схема не содержит дорогостоящих и редких деталей (не требуется программируемый контроллер). Не требуется заземление.

    Принцип: В первую половину полуволны сетевого напряжения энергия потребляется из сети то есть заряжается конденсатор, но заряжается через транзисторный ключ который управляется высокочастотными импульсами то есть энергия на зарядку потребляется импульсами повышенной частоты. Известно что счетчики в т.ч. электронные, т.к. они содержит индукционный датчик тока (трансформаторы тока) с магнитопроводом имеющим ограниченную проводимости по частоте, так и индукционные, т.к. содержат кроме магнитной еще и механическую часть измерительной системы, имеют очень большую отрицательную погрешность при протекание ВЧ тока. Остается во второй полупериод, через другое плечо ключей разрядить конденсатор в сеть без всяких импульсов. И так к примеру: потребили 2 кВт счетчик учел 0.5 Вт, отдали в идеале 2 кВт, счетчик учел -2 кВт. Результат периода - индукционный счетчик крутится назад со скоростью -1.5 кВт, а электронный стоит до 1.5 кВт. При этом слышно легкое жужание счетчика (на расстояние меньше 1-го метра).

    Плюсы: Не надо "тревожить" счетчик, не надо выполнять дополнительную проводку по дому. Не каких изменений схем учета. Способ пригоден как для частного сектора так и многоэтажек. Можно применять для 3-ф учета, аналогично как одно устройство так и три (по штуке в фазу). При этом мощность отмотки (торможения) увеличится в трое. Устройство работает одновременно с другими приборами (вычитает из них 1.5 - 2 кВт).

    Минусы: Нельзя "отмотать" счетчики со стопором (значок шестеренки с собачкой, на панели счетчика) и электронные счетчики, и тот и другой только остановятся что в принципе тоже позволяет пользоваться без учета электроэнергией. Необходимость сборки прибора. Схема не очень сложная, но понятия в элекронике желательны.

    Примечание: Мы не являемся авторами этого способа. Есть схема со спецификацией, само функционирующее устройство, описание его работы и принцип действия. Плюс, прилагается еще одна подобная но более сложная схема. А также электронная схема, работающая по следующему принципу:

    Краткое описание 2: При помощи этой схемы можно включить электрообогреватель в розетку совершенно незаметно для счетчика. Можно подключить любой электрический прибор не требовательный к форме питающего напряжения (плитка, котел, эл. обогреватель...). Как работает эта схема? После включения питания сетевое напряжение поступает одновременно на диоды VD1 и первичную обмотку трансформатора Т1. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи эмиттер-коллектор VT1. Если полярность сетевого напряжения положительная, ток протекает по цепи коллектор-эмиттер VT1. Ну и так далее. Таким образом, наш электрообогреватель превратился в высокочастотную (с точки зрения счетчика) нагрузку, а это ему ой как не нравится. Ведь известно, что счетчики как электронные (они содержит индукционный датчик тока с магнитопроводом, имеющим ограниченную проводимости по частоте), так и индукционные (содержат кроме магнитной еще и механическую часть измерительной системы), имеют очень большую отрицательную погрешность при протекании высокочастотного тока. Устройство вставляется в обычную розетку через него и запитывается электрообогрев (камин, котел и т.д.), нет необходимости доступа к счетчику или вводу, все остается без изменений.

    Детали и конструкция Микросхемы могут применяться любые: 155, 133, 156 и других серий. Не рекомендуется применение микросхем на основе МОП - структур, так как они более подвержены влиянию наводок от работы мощных ключевых каскадов.

    Ключевые транзисторы рекуператора обязательно устанавливаются на радиаторах. Лучше для каждого транзистора использовать отдельный радиатор площадью не менее 100 см2. Из соображений безопасности не следует использовать металлический корпус устройства в качестве радиатора для транзисторов.

    Для всех высоковольтных конденсаторов на схеме обозначено их номинальное напряжение. Конденсаторы на более низкое напряжение применять нельзя. Конденсатор С1.1 может быть только неполярным. В этом узле применение электролитического конденсатора не допускается. Схема рекуператора специально составлена для использования в качестве С3.1 и С3.2 дешевых электролитических конденсаторов, но надежнее и долговечнее всё-таки применение неполярных конденсаторов.

    Резисторы: R1.1 – R1.4 типа МЛТ-2; R3.17 - R3.22 проволочные мощностью не менее 10 Вт; остальные резисторы типа МЛТ-0.25.

    Трансформатор Tr1 – любой маломощный с двумя раздельными вторичными обмотками на 12 В и одной на 5 В. Главное требование – обеспечить при номинальном напряжении 12 В ток каждой вторичной обмотки не менее 3 А.

    Все модули устройства следует смонтировать на отдельных платах для облегчения последующей настройки. Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров.

    Наладка При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Не рекомендуется в качестве радиатора для транзисторов использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Накопительные конденсаторы работают в предельном режиме, поэтому перед включением устройства их нужно разместить в прочном металлическом корпусе.

    Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 3 А на выходах 16 В, а также 5 В для питания системы управления.

    Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С2.1, С2.2 или резисторы R2.1, R2.2. Логический блок системы управления при условии правильного монтажа наладки не требует. Желательно только убедиться с помощью осциллографа, что на выходах U1–U4 есть сигналы прямоугольной формы.

    Интегратор проверяют двулучевым осциллографом. Для этого общий провод осциллографа соединяют с нулевым проводом электросети (N), провод первого канала подсоединяют к точке соединения резисторов R1.1 и R1.3, а провод второго канала – к точке соединения R1.2 и R1.4. На экране должны быть видны две синусоиды частотой 50 Гц и амплитудой около 150 В каждая, смещенные между собой по оси времени на угол?/2. Далее проверяют наличие сигналов на выходах С1 и С2. Для этого общий провод осциллографа соединяют с точкой GND устройства. Сигналы должны иметь правильную прямоугольную форму, частоту также 50 Гц, амплитуду около 5 В и также должны быть смещены между собой на угол? /2 по оси времени. Если фазосмещение сигналов отличается от? /2, то его корректируют подбирая конденсатор С1.1.

    Настройка ключевых элементов рекуператора заключается в установке тока базы транзисторов Т3.2, Т3.4, Т3.6, Т3.8 на уровне не менее 1.5 - 2 А. Это необходимо для насыщения этих транзисторов в открытом состоянии. Для настройки рекомендуется отключить рекуператор от системы управления (выходы U1-U4), и при настройке каждого каскада подавать напряжение +5 В на соответствующий вход рекуператора U1-U4 непосредственно с блока питания. Ток базы устанавливают поочередно для каждого каскада, подбирая сопротивление резисторов R3.19 - R3.22 соответственно. Для этого может потребоваться еще подбор R3.4, R3.8, R3.12, R3.16 для соответствующего каскада. После отключения напряжения на входе ток базы ключевого транзистора должен уменьшаться почти до нуля (несколько мкА).. Такая настройка обеспечивает наиболее благоприятный тепловой режим работы мощных ключевых транзисторов.

    После настройки всех модулей восстанавливают все соединения в схеме и проверяют работы схемы в сборе. Первое включение рекомендуется выполнить с уменьшенными значениями емкости конденсаторов С3.1, С3.2 приблизительно до 1 мкФ. Конденсаторы лучше использовать неполярные. После включения устройства дайте ему поработать несколько минут, обращая особое внимание на температурный режим ключевых транзисторов. Если все в порядке – можете устанавливать электролитические конденсаторы. Увеличивать емкость конденсаторов до номинального значения рекомендуется в несколько этапов, каждый раз проверяя температурный режим.

    Мощность отмотки непосредственно зависит от емкости конденсаторов С3.1 и С3.2. Для увеличения мощности нужны конденсаторы большей емкости. Предельное значение емкости определяется величиной импульсного тока заряда. О его величине можно судить, подключая осциллограф параллельно резисторам R3.17 и R3.18. Для транзисторов КТ848А он не должен превышать 20 А. Если требуется еще большая мощность отмотки, придется использовать более мощные транзисторы, а также диоды D3.1-D3.4.

    Не рекомендуется использовать слишком большую мощность отмотки. Как правило, 1-2 кВт вполне достаточно. Если устройство работает совместно с другими потребителями, счетчик при этом вычитает из их мощности мощность устройства, но электропроводка будет загружена реактивной мощностью. Это нужно учитывать, чтобы не вывести из строя электропроводку.

    Способ Обогрев

    При помощи такой вот схемы можно включить камин в розетку совершенно незаметно для счетчика:) . Скажу прямо, можно подключить любой электрический прибор не требовательный к форме питающего напряжения.

    Как работает эта схема? После включения питания сетевое напряжение поступает одновременно на диоды VD1 и первичную обмотку трансформатора Т1. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи эмиттер-коллектор VT1. Если полярность сетевого напряжения положительная, ток протекает по цепи коллектор-эмиттер VT1. Значение тока нагрузки зависит от величины управляющего напряжения на базе VT1. Управляющее напряжение формируется генератором на логических элементах (микросхема К155ЛА3). Частота генератора - 2кГц, скважность - 50% . Таким макаром наш камин превратился в высокочастотную (с точки зрения счетчика) нагрузку, а это ему ой как не нравится... Останется только в нужный момент открывать транзистор и счетчик начнет крутится куда надо. Параллельно нагрузке можно включить конденсатор (на схеме показан как С1) - это улучшит форму напряжения подаваемого на нагрузку. Емкость придется подбирать экспериментально, рекомендую использовать бумажные конденсаторы. Можно применить более мощный транзистор.

    Принципиальная схема 1

    Способ №39 Электронный ограничитель

    Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 В, мощность потребления 1 кВт. Применение других элементов позволяет использовать устройство для питания более мощных потребителей. Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и от него питается нагрузка. Вся электропроводка остается нетронутой. Заземление не нужно. Счетчик при этом учитывает примерно четверть потребленной электроэнергии.

    Теоретические основы Работа устройства основана на том, что нагрузка питается не непосредственно от сети переменного тока, а от конденсатора, заряд которого соответствует синусоиде сетевого напряжения, но сам процесс заряда происходит импульсами высокой частоты. Ток, потребляемый устройством из электрической сети, представляет собой импульсы высокой частоты. Счетчики электроэнергии, в том числе электронные, содержат входной индукционный преобразователь, который имеет низкую чувствительность к токам высокой частоты. Поэтому энергопотребление в виде импульсов учитывается счетчиком с большой отрицательной погрешностью.

    Основными элементами являются силовой выпрямитель Br1, конденсатор C1 и транзисторный ключ T1. Конденсатор С1 включен последовательно в цепь питания выпрямителя Br1, поэтому в моменты времени, когда Br1 нагружен на открытый транзистор Т1, заряжается до мгновенной величины сетевого напряжения, соответствующей данному моменту времени. Заряд производится импульсами с частотой 2 кГц. Напряжение на С1, а также на подключенной параллельно ему нагрузке по форме близко к синусоидальному с действующим значением 220 В. Для ограничения импульсного тока через транзистор Т1 во время заряда конденсатора, служит резистор R6, включенный последовательно с ключевым каскадом. На логических элементах DD1, DD2 собран задающий генератор. Он формирует импульсы частотой 2 кГц амплитудой 5В. Частота сигнала на выходе генератора и скважность импульсов определяются параметрами времязадающих цепей С2-R7 и C3-R8. Эти параметры могут подбираться при настройке для обеспечения наибольшей погрешности учета электроэнергии. На транзисторах Т2 и Т3 построен формирователь импульсов, предназначенный для управления мощным ключевым транзистором Т1. Формирователь рассчитан таким образом, чтобы Т1 в открытом состоянии входил в режим насыщения и за счет этого на нем рассеивалась меньшая мощность. Естественно, Т1 также должен полностью закрываться. Трансформатор Tr1, выпрямитель Br2 и следующие за ними элементы представляют собой источник питания низковольтной части схемы. Этот источник обеспечивает питанием 36В формирователь импульсов и 5В для питания микросхемы генератора.

    Детали устройства Микросхема: DD1, DD2 - К155ЛА3. Диоды: Br1 – Д232А; Br2 - Д242Б; D1 – Д226Б. Стабилитрон: D2 – КС156А. Транзисторы: Т1 – КТ848А, Т2 – КТ815В, Т3 – КТ315. Т1 и Т2 устанавливаются на радиаторе площадью не менее 150 см2 . Транзисторы устанавливаются на изолирующих прокладках. Конденсаторы электролитические: С4 - 1000 мкФ Ч 50В; С5 - 1000 мкФ Ч 16В; Конденсаторы высокочастотные: С1- 1мкФ Ч 400В; С2, С3 – 0.1 мкФ (низковольтные). Резисторы: R1, R2 – 27 кОм; R3 – 56 Ом; R4 – 3 кОм; R5 -22 кОм; R6 – 10 Ом; R7, R8 – 1.5 кОм; R9 – 560 Ом. Резисторы R3, R6 – проволочные мощностью не менее 10 Вт, R9 - типа МЛТ-2, остальные резисторы – МЛТ-0.25. Трансформатор Tr1 – любой маломощный 220/36 В.

    Наладка При наладке схемы соблюдайте осторожность! Помните, что низковольтная часть схемы не имеет гальванической развязки от электрической сети! Не рекомендуется в качестве радиатора для транзисторов использовать металлический корпус устройства. Применение плавких предохранителей – обязательно! Вначале проверяют отдельно от схемы низковольтный блок питания. Он должен обеспечивать ток не менее 2 А на выходе 36 В, а также 5 В для питания маломощного генератора. Затем налаживают генератор, отключив силовую часть схемы от электросети. Генератор должен формировать импульсы амплитудой 5 В и частотой около 2 кГц. Скважность импульсов приблизительно 1/1. При необходимости для этого подбирают конденсаторы С2, С3 или резисторы R7, R8. Формирователь импульсов на транзисторах Т2 и Т3, если правильно собран, обычно наладки не требует. Но желательно убедиться, что он способен обеспечить импульсный ток базы транзистора Т1 на уровне 1.5 – 2 А. Если такое значение тока не обеспечить, транзистор Т1 не будет в открытом состоянии входить в режим насыщения и сгорит за несколько секунд. Для проверки этого режима можно при отключенной силовой части схемы и отключенной базе транзистора Т1, вместо резистора R1 включить шунт сопротивлением в несколько Ом. Импульсное напряжение на шунте при включенном генераторе регистрируют осциллографом и пересчитывают на значение тока. При необходимости подбирают сопротивления резисторов R2, R3 и R4. Следующей стадией является проверка силовой части. Для этого восстанавливают все соединения в схеме. Конденсатор С1 временно отключают, а в качестве нагрузки используют потребитель малой мощности, например лампу накаливания мощностью до 100 Вт. При включении устройства в электрическую сеть действующее значение напряжения на нагрузке должно быть на уровне 100 – 130 В. Осциллограммы напряжения на нагрузке и на резисторе R6 должны показать, что питание её производится импульсами с частотой, задаваемой генератором. На нагрузке серия импульсов будет модулирована синусоидой сетевого напряжения, а на резисторе R6 – пульсирующим выпрямленным напряжением. Если всё исправно, подключают конденсатор С1, только вначале емкость его принимают в несколько раз меньше номинальной (например 0.1 мкФ). Действующее напряжение на нагрузке заметно возрастает и при последующем увеличении емкости С1 достигает 220 В. При этом очень важно внимательно следить за температурой транзистора Т1. Если возникает повышенный нагрев при использовании маломощной нагрузки, это свидетельствует о том, что Т1 либо не входит в режим насыщения в открытом состоянии, либо полностью не закрывается. В этом случае следует вернуться к настройке формирователя импульсов. Эксперименты показывают, что при питании нагрузки мощностью 100 Вт без конденсатора С1, транзистор Т1 в течение длительного времени не нагревается даже без радиатора. В заключении подключается номинальная нагрузка и подбирается емкость С1 такая, чтобы обеспечить питание нагрузки напряжением 220 В. Емкость С1 следует подбирать осторожно, начиная с малых значений, так как увеличение емкости резко увеличивает импульсный ток через транзистор Т1. Об амплитуде импульсов тока через Т1 можно судить, подключив осциллограф параллельно резистору R6. Импульсный ток должен быть не более допустимого для выбранного транзистора (20 А для КТ848А). В случае необходимости его ограничивают, увеличивая сопротивление R6, но лучше остановиться на меньшем значении емкости С1. При указанных деталях устройство рассчитано на нагрузку 1 кВт. Применяя другие элементы силового выпрямителя и транзисторный ключ соответствующей мощности, можно питать и более мощные потребители. Обращаем Ваше внимание на то, что при отключенной нагрузке устройство потребляет из сети довольно большую мощность, которая учитывается счетчиком. Поэтому рекомендуется всегда нагружать устройство номинальной нагрузкой, а также отключать при снятии нагрузки.

    Схема устройства приведена на рис.1.

    Немногие, наверное, вспомнят, как раньше отматывали показания счетчика электроэнергии. Делали это трансформатором, который необходимо было заземлить. Заземлителем обычно служила батарея или другая коммуникация. Это было очень опасно для жизни. Теперь же никаких посторонних вмешательств в электрическую проводку и заземляющих проводников. Включил в обычную розетку генератор обратной мощности и жди результата. Обычный электросчетчик с диском – мотает цифры в обратную сторону, современный электронный счетчик – просто останавливается.

    Расчет мощности по показаниям электросчетчика

    Приборы для учета потребляемой энергии не всегда верно отсчитывают используемую мощность электронных компонентов. Для того, чтобы проверить работу электросчетчика необходимо:

    • иметь возможность осмотреть устройство. Электросчетчик может находиться в квартире или на лестничной площадке;
    • на передней панели указан класс точности прибора – это допустимая величина погрешности в %. Например, если класс точности 3, то устройство за использованный 100Вт/ч посчитает показатель – от 97 до 103 Вт/ч. Это будет нормой рассчитанного электричества для данного счетчика;
    • для проверки работы включите в сеть только одну лампу накаливания на один час, и смотрите за показаниями на электросчетчике.

    Если Ваш прибор для учета электроэнергии не оправдал испытания – следует подать заявку на его замену в Энергонадзор.

    Как рассчитать мощность электрического тока

    Электрический счетчик рассчитывает не потребляемую электронными компонентами мощность, а работу, проделанную электрическим током, а правильнее – израсходованную при этом энергию. Рассчитать мощность электросчетчика можно двумя методами:

    • посчитать количество оборотов за единицу времени и сравнить этот показатель цифрой, указанной на счетчике. Например, если стоит показатель 300 , это значит, что диск прибора совершает 300 оборотов за один час. Значит за 10 минут он должен совершить 50 оборотов;
    • и наоборот: задаем количество оборотов и смотрим, за какое время счетчик проделает эту работу.

    Расход электроэнергии

    Для того, чтобы контролировать расход электроэнергии, необходимо знать точную цифру, потребляемую Вашими электроприборами. Число, показывающее на используемую мощность, указывается, обычно, в технических характеристиках электроустройства. Зная это число и возможные способы проверки этого показателя, можно контролировать расход электроэнергии. Или приобрести генератор обратной мощности электросчетчика и забыть о расчетах. Однако, следует заметить, что промышленностью выпускаются уже «умные» приборы для учета электричества, которые могут зафиксировать обман. Тогда серьезных проблем с Энергонадзором уже не избежать!

    В современном глобальном мире экономия энергоресурсов выходит на первое место по своей актуальности. Экономия энергии, в некоторых странах, активно поддерживается государством не только для крупных потребителей, но и для обычных обывателей. Что в свою очередь делает компенсатор реактивной мощности актуальным для домашнего применения.

    Компенсация реактивной мощности:

    Многие потребители, прочитав в интернете о компенсации реактивной мощности крупными заводами и фабриками тоже задумываются о компенсации реактивной составляющей у себя дома. Тем более что сейчас существует большой выбор компенсирующих устройств, применять которые можно в обыкновенном быту. О том, действительно ли существует возможность, несколько сэкономить на этом у вас дома, вы можете прочитать в этой статье . А мы рассмотрим, возможность сделать такой компенсатор своими руками.

    Отвечу сразу – да, возможно. Более того, это не только дешевое, но и довольно простое устройство, однако для понимания принципа его работы нужно знать, что такое реактивная мощность .

    С курса школьной физики, и азов электротехники многим из вас уже известно общие сведенья о реактивной мощности, поэтому следует перейти сразу к практической части, однако невозможно этого сделать, миновав нелюбимую всеми математику.

    Итак, для начала выбора элементов компенсатора необходимо рассчитать реактивную мощность нагрузки:

    Поскольку такие составляющие как напряжение и ток мы можем померять, то фазовый сдвиг мы можем замерять только с помощью осциллографа, а он есть не у всех, так что придется идти другим путем:

    Поскольку мы используем самое примитивное устройство из самих конденсаторов, нам необходимо рассчитать их емкость:

    Где f – частота сети, а Х С – реактивное сопротивление конденсатора, оно равно:

    Конденсаторы подбираются по току, напряжению, емкости, мощности соответственно, отталкиваясь от ваших потребностей. Желательно чтобы количество конденсаторов было больше единицы, чтобы возможно было экспериментально подобрать наиболее подходящую емкость для нужного потребителя.

    В целях безопасности компенсирующее устройство должно подключатся через плавкий предохранитель или автомат (на случай слишком большого зарядного тока или КЗ).

    Поэтому рассчитаем ток плавкого предохранителя (плавкой вставки):

    Где і в – ток плавкой вставки (предохранителя), А; n – количество конденсаторов в устройстве, штук; Q k – номинальная мощность однофазного конденсатора, кВАр; U л – линейное напряжение, кВ (в нашем случае фазное без).

    Если используем автомат:

    После отключения компенсатора от сети на его зажимах будет напряжение, поэтому для быстрого разряда конденсаторов можно использовать резистор (лучше всего лампочку накаливания или неонку), подключив его параллельно устройству. Блок-схема и принципиальная схемы приведены ниже:


    Блок-схема включения компенсатора реактивной мощности
    Продемонстрирую более наглядно

    В отверстие номер один подключается потребитель, а в отверстие номер два подключается компенсатор.


    Принципиальная схема компенсатора реактивной мощности
    Включение через предохранитель-автомат

    Включается компенсирующее устройство всегда параллельно нагрузке. Данная хитрость уменьшает результирующий ток цепи, что уменьшает нагрев кабеля, соответственно к одной розетке может быть подключено большое количество потребителей или увеличена их мощность.

    Электронное устройство под условным названием г енератор обратной мощности просто включается в любую розетку, никакие вмешательства в электропроводку и заземление не нужны. Потребители питаются как обычно, устройство им не мешает. Но индукционный счетчик (с диском) при этом считает в обратную сторону, а электронные и электронно-механические останавливаются, что тоже неплохо. Устройство приводит к циркуляции мощности в двух направлениях через счетчик. В прямом направлении за счет высокочастотной модуляции тока осуществляется частичный учет, а в обратном – полный. Поэтому счетчик воспринимает работу устройства как источник энергии, питающий из Вашей квартиры всю электрическую сеть. Счетчик при этом считает в обратную сторону со скоростью, равной разности полного и частичного учета. Если мощность потребителей окажется большей, чем обратная мощность устройства, то счетчик будет вычитать последнюю из мощности потребителей. Собрать и настроить устройство несложно. Характерные особенности. Не нужно никакое вмешательство в электропроводку. Вся электропроводка остается нетронутой. Заземление не нужно. Устройство эффективно, как для однофазных счетчиков при напряжении 220В, так и для трехфазных 380В. Потребители с генератором не связаны. Устройство защитного отключения (УЗО) не мешает работе устройства.

    Один из вариантов принципиальной схемы генератора обратной мощности для ознакомления представлен ниже. Принципиальная в развернутом виде и описание находятся в разделе полезностей.


    Простыми словами принцип действия генератора обратной мощности можно описать так:

    • Заряжаем некую большую емкость до удвоееного сетевого напряжения. Заряжем ее короткими импульсами. Электросчетчик на них не реагиурет, тоесть конденсатор зарядился от сети безучетно.
    • Теперь конденсатор нужно разрядить, но когда, например положительная полуволна. Ток будет течь из конденсатора (на нем удвоенное напряжение) Импульс разряда получается длиннее, на который счетчик уже реагирует и крутить будет в обратную сторону, ведь ток течет обрато в сеть.
    • Делаем тоже для отрицательной полуволны. В результате имеем пресловутый генератор обратной мощности.

    Примечание: Последний рабочий вариант схемы генератора обратной мощности с подробным описанием по сборке и настройке