Open
Close

Пример выбора и расчёта посадок подшипника качения. Допуски и посадки подшипников качения Важность правильной посадки

Для сокращения номенклатуры подшипники изготавливают с отклонениями размеров наружного и внутреннего диаметров не зависимо от посадки, по которой их будут монтировать. Для всех классов точности подшипников верхнее отклонение присоединительных диаметров принято равным нулю. Таким образом, диаметры наружного и внутреннего колец приняты соответственно за диаметры основного вала и основного отверстия, а следовательно, посадку соединения наружного кольца подшипника с корпусом назначают в системе вала, а посадку соединения внутреннего кольца подшипника с валом – в системе отверстия. Однако поле допуска на диаметр отверстия внутреннего кольца расположено в «минус» от номинального размера, а не в «плюс», как у обычного основного отверстия, т.е. не в «тело» кольца, а вниз от нулевой линии (рис. 49).

Такое расположение поля допуска установлено с целью обеспечения сравнительно небольшого натяга в соединении внутреннего кольца подшипника с валом при использовании имеющихся в ЕСКД полей допусков на валы под переходные посадки, с учетом, что в большинстве подшипниковых соединений вращается вал, а корпус с наружным кольцом неподвижны.

Посадка подшипника в корпус в этих же условиях, как будет показано в дальнейшем, должна быть с небольшим зазором, поэтому поле допуска на диаметр наружного кольца располагается в «тело» детали или в «минус», как принято в общем машиностроении для основного вала.

Вследствие овальности конусообразности и других отклонений формы при измерении могут быть получены различные значения диаметра колец подшипников в разных сечениях. В связи с этим стандартом установлены предельные отклонения номинальных , и средних , диаметров колец. Средние диаметры и определяют расчетом как среднее арифметическое наибольшего и наименьшего диаметров, измеренных в двух крайних сечениях кольца.

К шероховатости посадочных и торцовых поверхностей колец подшипников, а также валов и корпусов предъявляют повышенные требования. Например, у колец подшипников класса точности 4 и 2 диаметром до 250 мм параметр шероховатости должен быть в пределах 0,63…0,32 мкм. Особое значение имеет шероховатость поверхности дорожек и тел качения. Уменьшение параметра шероховатости поверхности от 32…0,16 мкм до 0,16…0,08 мкм повышает ресурс подшипника более чем в два раза, а дальнейшее уменьшение параметра шероховатости до 0,08…0,04 мкм – еще на 40 %.

Выбор посадок колец подшипников на вал и в корпус осуществляется согласно ГОСТ 3325-85, исходя из условий работы сборочной единицы, в которую входят подшипники. При этом учитываются: схема работы сборочной единицы (вращается вал с внутренним кольцом или корпус с наружным кольцом); вид нагружения колец и режим работы подшипника.

Практически чаще всего сборочные единицы, содержащие подшипники, работают по схеме, когда вращается внутренне кольцо с валом, а наружное кольцо и корпус неподвижны (рис. 50). В этом случае необходимо обеспечить неподвижность соединения внутреннего кольца подшипника с валом. Это достигается за счет использования полей допусков валов под переходные посадки (основные отклонения , , , ), что, благодаря специфическому расположению поля допуска внутреннего кольца (вниз от нулевой линии), позволяет получить в соединении небольшой, чаще всего гарантированный натяг. Исключение представляет случай, когда предельные отклонения вала расположены симметрично относительно нулевой линии. Однако в этом случае вероятность получения натяга в соединении достаточно велика (96…98 %).

Рис. 50. Схемы полей допусков посадок колец подшипников на вал и в корпус

при вращении вала с внутренним кольцом подшипника

Применять для рассматриваемого соединения валы с полями допусков под неподвижные посадки недопустимо, так как получаемые при этом натяги сильно осложняют условия монтажа и демонтажа подшипников, а в процессе их эксплуатации возможны поломки в связи со значительными внутренними напряжениями в кольцах и шариках и заклинивание тел качения.

Поля допусков валов, как видно из рис. 50, выбирают по системе основного отверстия:

Для подшипников класса точности 0 и 6 − , , , ;

Для подшипников класса точности 5 и 4 − , , , ;

Для подшипников класса точности 2 − , , , .

Наружное кольцо подшипника в корпус при рассматриваемой схеме работы сборочной единицы должно устанавливаться свободно. Поля допусков отверстий корпусов выбирают по системе основного вала:

Для подшипников класса точности 0 и 6 − , , , , , , ;

Для подшипников класса точности 5 и 4 − , , ;

Для подшипников класса точности 2 − , , .

В результате обеспечивается легкость монтажа, устраняется возможность заклинивания тел качения и создаются условия для периодического проворачивания наружного кольца в корпусе, что способствует более равномерному износу его беговой дорожки.

Если вращается наружное кольцо с корпусом, а внутреннее кольцо и вал неподвижны, то в этом случае необходимо обеспечить неподвижность соединения наружного кольца с корпусом. Соединение внутреннего кольца с валом в рассматриваемом случае должно быть свободным. Поля допусков для отверстий корпусов и поля допусков на валы приведены в справочной литературе по нормированию точности подшипников.

Выбор посадок колец подшипников определяется также видом нагружения и режимом работы.

В случае если сборочная единица работает по схеме, вращается вал с внутренним кольцом, а корпус с наружным кольцом неподвижны, возможны две типовые схемы нагружения подшипника.

Первая типовая схема (рис. 51, а ). Радиальная нагрузка постоянна по величине и направлению. В этом случае внутреннее кольцо подшипника испытывает циркуляционное нагружение , а наружное кольцо – местное нагружение.

При местном нагружении (рис. 51, б ) кольцо подшипника воспринимает радиальную нагрузку , постоянную по направлению, лишь ограниченным участком беговой дорожки и передает ее ограниченному участку корпуса. Поэтому сопряжение наружного кольца подшипника с корпусом должно быть осуществлено по посадке с небольшим средневероятным зазором. За счет наличия зазора данное кольцо в процессе работы под действием отдельных толчков, сотрясений и других факторов будет периодически проворачиваться в корпусе, вследствие чего износ беговой дорожки станет более равномерным и долговечность подшипника существенно возрастет.

Циркуляционное нагружение создается на кольце при постоянно направленной радиальной нагрузке, когда место нагружения последовательно перемещается по окружности кольца со скоростью его вращения (рис. 51, в ). Посадка вращающегося циркуляционно нагруженного кольца должна обеспечивать гарантированный натяг, который исключает возможность относительного смещения или проскальзывания кольца и вала. Наличие вышеуказанных процессов приведет к развальцовке сопрягаемых поверхностей, потере точности, перегреву и быстрому выходу сборочной единицы из строя.

а б в

Рис. 51. Первая типовая схема нагружения подшипника и виды нагружения колей:

а – типовая схема нагружения; б – местное нагружение наружного кольца; в – циркуляционное нагружение внутреннего кольца

колебательным .

Внутреннее кольцо воспринимает суммарную радиальную нагрузку последовательно всей контактной поверхностью дорожки качения, т. е. имеет циркуляционное нагружение , схема которого, аналогичная схеме, представленной на рис. 52, в.

Режим работы подшипника принимается в зависимости от его расчетной долговечности. При расчетной долговечности более 10000 часов режим считается легким, при 5000…10000 часов − нормальным и при 2500…5000 часов − тяжелым. При ударных и вибрационных нагрузках, которые испытывают, например, трамвайные и железнодорожные буксы, валы дробильных машин и т.п., режим считается тяжелым независимо от расчетной долговечности.

Рассматриваемый узел редуктора (рис. 15) имеет вал, опорами которого являются два шариковых подшипника с диаметром отверстия 30 мм. Учитывая, что требования к точности вращения вала специально не оговорены, а также то, что данный редуктор не относится к высокоскоростным, принимаем нормальный класс точности подшипников (условное обозначение подшипника 306).

Рис. 15. Фрагмент редуктора

Данный подшипник относится к шариковым радиальным однорядным открытым, серия диаметров средняя (3), серия ширин – узкая. Основные размеры подшипника:

· номинальный диаметр отверстия внутреннего кольца под-шипника d = 30 мм;

· номинальный диаметр наружной цилиндрической поверхности наружного кольца D = 72 мм;

· номинальная ширина подшипника B = 19 мм;

· номинальная высота монтажной фаски r = 2 мм.

Определяем виды нагружения колец подшипника (местное, циркуляционное, колебательное). Так как передача крутящего момента осуществляется цилиндрическими зубчатыми колёсами, то в зубчатом зацеплении действует радиальная нагрузка, постоянная по направлению и по значению. Вал вращается, а корпус неподвижен, следовательно, внутреннее кольцо испытывает циркуляционное нагружение, а наружное кольцо – местное. Примем легкий режим работы подшипникового узла. ГОСТ 3325 для такого случая рекомендует поля допусков цапфы вала, сопрягаемой с кольцом подшипника качения, k 6 или j s 6. Выбираем поле k 6, которое обеспечивает посадку с натягом (см. рис. 11). Так же на основании рекомендаций стандарта выбираем поле допуска отверстия корпуса Н7 . Предельные отклонения средних диаметров колец подшипника качения определяем по ГОСТ 520, предельные отклонения вала Ø30k 6 и отверстия корпуса Ø72Н 7 – по ГОСТ 25347-82 «Основные нормы взаимозаменяемости. Единая система допусков и посадок. Поля допусков и рекомендуемые посадки» и расчеты сводим в таблицы (табл. 16 и 17).

Таблица 16

Предельные размеры колец подшипников качения

Строим схемы расположения полей допусков сопрягаемых деталей подшипникового узла и рассчитываем зазоры (натяги).

По d m :

N max = d max – d m min = 30,015 – 29,990 = 0,025 мм = 25 мкм;

N min = d min – d m max = 30,002 – 30,000 = 0,002 мм = 2 мкм;

N cp = (N max + N min)/2 = (25 + 2)/2 = 13,5 мкм.

Рис. 16. Схема расположения полей допусков сопряжения Ø30L 0/k 6

По D m :

S max = D max – D m min = 72,030 – 71,987 = 0,043 мм = 43 мкм;

S min = D min – D m max = 72,000 – 72,000 = 0,000 мм;

S cp = (S max + S min)/2 = (43 + 0)/2 = 21,5 мкм;

T S = IT Dm + IT D = 30 + 13 = 43 мкм.

Производим проверку наличия в подшипнике качения радиального зазора, который уменьшается по причине натяга при посадке подшипника на вал. В расчетах принимаем среднее значение натяга и среднее значение зазора в подшипнике как наиболее вероятные:

N cp = 13,5 мкм;

N эф = 0,85·13,5 = 11,5 мкм = 0,0115 мм;

d 0 = d m + (D m – d m)/ 4 = 30,000 + (72,000 – 30,000)/4 = 40,5 мм;

Δd 1 = N эф ·d m / d 0 = 0,0115·30/40,5 = 0,0085 мм = 8,5 мкм.

Рис. 17. Схема расположения полей допусков сопряженияØ72Н 7/l 0

По ГОСТ 24810 определяем предельные значения теоретических зазоров в подшипнике 306 до сборки:

G r min = 5 мкм;

G r mах = 20 мкм.

Средний зазор в подшипнике 306 определяется как полусумма предельных теоретических зазоров:

G r cp = (G r min + G r m ах)/2 = (5 + 20)/2 = 12,5мкм.

G пос = G r cp – Δd 1 = 12,5 – 8,5 = 4 мкм.

Расчёт показывает, что при назначении посадки Ø30L0/k6 по внутреннему диаметру зазор в подшипнике качения после посадки будет положительным.

На чертежах общего вида выбранные посадки подшипника качения обозначаются:

· на вал – Ø30L 0/k 6, где L 0 – поле допуска внутреннего кольца подшипника нормального класса точности; k 6 – поле допуска вала.

· в корпус – Ø72Н 7/l 0, где Н 7 – поле допуска отверстия корпуса; l 0 – поле допуска наружного кольца подшипника нормального класса точности.

По ГОСТ 20226-82 «Подшипники качения. Заплечики для установки подшипников качения. Размеры» определяем диаметры заплечиков вала и корпуса.

Для диаметра вала d = 30 мм шариковых подшипников наименьший и наибольший диаметры заплечика соответственно равны = 36 мм и = 39 мм. Выбираем диаметр заплечика = 36 мм как предпочтительный размер из ряда Ra 20.

Для внутреннего диаметра корпуса D = 72 мм шариковых подшипников диаметр заплечика равен D a = 65 мм.

Шероховатость посадочных поверхностей, сопрягаемых с кольцами подшипника деталей, зависит от диаметра и класса точности подшипника. Наибольшие значения параметров для посадочных поверхностей валов, отверстий и торцов заплечиков валов и корпусов представлены в табл. 18.

Таблица18

Значения параметров шероховатости

для посадочных поверхностей, сопрягаемых с подшипниками

По ГОСТ 3325, табл. 3, выбираем требования к шероховатости (можно также использовать табл. 18 данного издания):

· посадочной поверхности вала под кольцо подшипника 1,25;

· посадочной поверхности корпуса под кольцо подшипника 1,25;

· торцовой поверхности заплечика вала 2,5.

Исходя из рекомендаций, приведенных в п. 2.2.7, назначаем более жесткие требования к шероховатости посадочной поверхности вала под кольцо подшипника 0,32, посадочной поверхности корпуса под кольцо подшипника 0,32, торцевой поверхности заплечика вала 1,25.

В ГОСТ 3325 также нормированы требования к форме посадочных поверхностей вала и корпуса, сопрягаемых с кольцами подшипника, и к торцовому биению заплечиков валов и отверстий корпусов.

Из табл. 4 ГОСТ 3325 выбираем значения:

· допуска круглости посадочной поверхности вала под кольцо подшипника 3,5 мкм;

· допуска профиля продольного сечения посадочной поверхности вала под кольцо подшипника 3,5 мкм;

· допуска круглости посадочной поверхности корпуса под кольцо подшипника 7,5 мкм;

· допуска профиля продольного сечения посадочной поверхности корпуса под кольцо подшипника 7,5 мкм.

Следует отметить, что ограничения, наложенные стандартом на форму поверхностей, сопрягаемых с подшипниками, могут не совпадать со стандартными допусками формы по ГОСТ 24643-81 «Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Числовые значения». Однако можно согласовать эти требования за счет ужесточения «расчетных» допусков до ближайших стандартных значений, установленных в общетехнических стандартах. Исходя из этого назначаем допуск круглости посадочной поверхности вала под кольцо подшипника равным 3 мкм и допуск профиля продольного сечения посадочной поверхности вала под кольцо подшипника равным 3 мкм, допуск кругло-сти посадочной поверхности корпуса под кольцо подшип-ника равным 6 мкм и допуск профиля продольного сечения посадочной поверхности корпуса под кольцо подшипника равным 6 мкм.

Стандарт нормирует также торцовое биение заплечиков валов и отверстий корпусов. Из табл. 5 ГОСТ 3325 выбираем значения:

· допуска торцового биения заплечика вала 21 мкм;

· допуска торцового биения заплечика корпуса 30 мкм.

Допуск торцового биения заплечика вала можно округлить до значения 20 мкм.

Суммарное допустимое отклонение от соосности, вызванное неблагоприятным сочетанием всех видов погрешностей обработки, сборки и деформации подшипников посадочных поверхностей вала и корпуса под действием нагрузок, оценивается допустимым углом взаимного перекоса θ max между осями внутреннего и наружного колец подшипников качения, смонтированных в подшипниковых узлах. В прил. 7 ГОСТ 3325 приведены числовые значения допусков соосности посадочных поверхностей для валов и для корпусов в подшипниковых узлах различных типов при длине посадочного места В 1 = 10 мм (в диаметральном выражении). При другой длине посадоч-ного места B 2 для получения соответствующих допусков соосности табличные значения следует умножить на B 2 /10. Под-шипник 306 имеет ширину B 2 = 19 мм и относится к группе радиальных однорядных шариковых. Примем нормальный ряд зазоров. Тогда допуск соосности поверхностей вала составит Т соосн = 4·В 2 /10 = 4·19/10 = 7,6 мкм; ужесточаем рассчитанный допуск по ГОСТ 24643 и принимаем Т соосн = 6 мкм. Соответственно для поверхностей корпуса Т соосн = 8·B 2 /10 =
= 15,2 мкм; ужесточаем до значения Т соосн = 12 мкм.

Допуски соосности можно заменить допусками радиального биения тех же поверхностей относительно их общей оси с учетом того, что на те же поверхности обязательно задаются допуски цилиндричности, которые вместе с допусками радиального биения ограничивают такие же отклонения, какие ограничивают допуски соосности.

Рис. 19. Пример обозначения точностных требований

к поверхностям отверстий корпуса, сопрягаемым с подшипником качения

Для образования посадок с подшипниками качения из общей системы допусков и посадок (ГОСТ 25347-89) отобрана группа полей допусков, т.е. основных отклонений и квалитетов. Полный набор этих отобранных полей допусков приведен в ГОСТ 3325-85, в котором также рассматриваются вопросы использования этих полей допусков. В этом стандарте выделены посадки, которые используются для основных типов соединений, и посадки ограниченного применения. Естественно, что речь идет о полях допусков и отверстий на элементы деталей обрабатываемых потребителем подшипников. Полный набор полей допусков, используемых при образовании посадок с подшипниками качения, приведен на рис. 41.

Для облегчения студентам выполнения работ при курсовом и дипломном проектировании, а также для работы начинающим специалистам, приведены табл. 6 и 7. содержащие основные поля допусков для валов и отверстий, на которые устанавливаются подшипники качения.

Рис. 41. Поля допусков валов и отверстий посадочных поверхностей для установки подшипников качения

Таблица 6

Поля допусков валов для основных видов сопряжений по кольцу подшипника

Таблица 7

Поля допусков отверстий для основных видов сопряжений

посадочных поверхностей по наружному кольцу подшипника

Как можно видеть из приведенных таблиц, точность присоединительных поверхностей отверстий обычно на один квалитет больше, чем для валов при образовании посадок, т.е. точность отверстия на 60% меньше, чем у вала. Объясняется это тем, что изготавливать и измерять отверстие труднее и дороже, чем вал того же номинального значения, а характер посадки определяется не значениями размера одного из сопрягаемых размеров, а разностью их размеров.

4.2.7. Посадки подшипников качения на валы

и в отверстия корпусов

Как и при образовании посадок в соответствии с единой системой допусков и посадок, посадка подшипников осуществляется в системе отверстия и в системе вала.

Посадки по наружному диаметру подшипника осуществля-ются в системе вала, поскольку с приобретением подшипника одновременно приобретается готовый вал и нет смысла его дополнительно обрабатывать для получения посадок в системе отверстия.

Посадки по внутреннему диаметру подшипника осуществляются в системе отверстия. Поля допусков отверстия подшипника расположены не в плюс, как у обычных основных отверстий, а в минус - для получения большего количества переходных посадок. В этом особенность посадок в системе отверстия по внутреннему кольцу подшипника.

Обозначение посадок подшипников, в принципе, такое же, как в общей системе допусков и посадок, т.е. в виде дроби, когда в числителе указывается поле допуска отверстия, а в знаменателе - поле допуска вала (рис. 42, а). Естественно, что одним из полей допуска является поле допуска кольца подшипника.

Рис. 42. Обозначение на сборочном чертеже посадок подшипников качения

Обозначение может осуществляться несколькими вариантами: обозначение посадки в системе отверстия (по внутреннему кольцу):

Ǿ50 L0/js6; или Ǿ50 L0 - js6; или Ǿ50 ;

обозначение посадки в системе вала подшипника (по наружному кольцу):

Ǿ90 Н7/l 0; или Ǿ90Н7 - l 0; или Ǿ90

Стандартом допускается, а на производстве этим повсеместно пользуются, не указывать поле допуска кольца подшипника (рис. 42, б). Таким образом, но сборочном чертеже допускается вместо посадки указывать только поле допуска размера, который будет обрабатываться по данному чертежу на данном производстве, и не указывать точность (поле допуска) поверхности подшипника. Такая система обозначения многих вполне устраивает (чем меньше надо указывать, тем меньше надо знать), но существенный недостаток этого обозначения в том, что на чертеже не указывается в явном виде точность используемого подшипника.

Кольца подшипников имеют малую жесткость, при сборке происходит их деформация. Размеры колец до сборки и после нее отличаются. Поэтому допуски присоединительных диаметров имеют отличие по сравнению с системой допусков и посадок общего назначения.

Предельные отклонения (d тр и D mp ) для внутреннего и наружного колец определяются по ГОСТ 520 для средних диаметров – d mp и D mp соответственно, как разность между средним диаметром и номинальным его значением:

d mp = d mp – d ∆ D mp = D mp – D.

Средний диаметр (d mp ; D mp ) равен полусумме наибольшего (ds max ; Ds max ) и наименьшего (ds min ; Ds min ) действительных значений диаметров определенных двухточечным контактом (измерением) в одной радиальной плоскости (перпендикулярной оси):

d mp = (ds max + ds min)/2;

D mp = (Ds max + Ds min)/2.

Для всех типов и классов точности подшипников верхнее отклонение для наружного и внутреннего колец равно нулю.

Нижние предельные отклонения задаются со знаком минус для обоих колец (см. таблицу 5.9.), что позволяет для присоединительных деталей (вал и корпус) использовать стандартные поля допусков по ГОСТ 25346.

Поля допусков подшипников имеют специальные обозначения: l – для диаметра наружного кольца; L – для диаметра внутреннего кольца с указанием класса точности. Например, L 6; l 6 – допуски внутреннего и наружного колец 6-го класса точности соответственно.

Значения допусков на посадочные размеры подшипника класса точности 0 соответствуют примерно 5 или 6 квалитетам, а для подшипников 2 класса – 2 или 3 квалитетам.

Допуск цилиндричности для колец подшипника допускается в пределах 0,5 от допуска на диаметр посадочной поверхности 0 и 6 классов точности, или 0,25 от допуска на диаметр посадочной поверхности для классов 5; 4; 2; Т .

Особое значение на работоспособность подшипников оказывает шероховатость посадочных поверхностей (R a = 0,2...0,4), а также дорожек и тел качения (R a = 0,1...0,025).

Надежность работы подшипниковых узлов зависит от правильного выбора посадок колец подшипников на вал и в корпус.

5.4 Выбор посадок для колец подшипника

Соединение колец подшипников качения с валами (осями) и отверстиями корпусов производятся в соответствии с ГОСТ 3325. Основные отклонения и поля допусков валов и отверстий корпусов для посадочных мест, предназначенных для монтажа подшипников качения, представлены на рисунке 5.10. Посадка наружного кольца в отверстие корпуса осуществляется по системе вала, причем отклонение наружного кольца подшипника обозначено буквой l , а поле допуска отверстия в корпусе выбирается из рисунка 5.10, а. Внутреннего кольца подшипника имеет отклонение отрицательное, что позволяет использовать для вала стандартные поля допусков (см. рисунок 5.10, б ).

Выбор полей допусков для посадок зависит от типа, размера, класса точности подшипника, от величины, направления и действия нагрузки (радиальная или осевая) и других условий эксплуатации: интенсивности радиальной нагрузки, режима работы (допустимая перегрузка), жесткости вала и корпуса, вида нагружения.

Различают три вида нагружения колец подшипника: циркуляционное, местное и колебательное. Вид нагружения кольца подшипника зависит от того, вращается кольцо или неподвижно, а также как воспринимается радиальная нагрузка.

Вращающееся кольцо испытывает циркуляционный вид нагружения (нагрузку воспринимает кольцо всей окружностью дорожки качения и передает ее посадочной поверхности вала или корпуса), что требует обеспечения неподвижного соединения с сопрягаемой деталью.

Местнонагруженное кольцо воспринимает результирующую радиальной нагрузки ограниченным участком окружности дорожки качения кольца и передает ее соответствующему ограниченному участку посадочной поверхности вала или корпуса (это наблюдается на не вращающемся кольце). Посадка его обычно производится с гарантированным зазором, чтобы исключить интенсивный местный износ дорожки качения кольца подшипника и заклинивание тел качения.

Колебательный вид нагружения встречается реже. В этом случае оба кольца устанавливаются по переходным посадкам (js ; Js ), обеспечивающим проворачивание колец. При колебательном нагружении на подшипник действуют две радиальные нагрузки: постоянная по величине и вращающаяся вокруг оси. Их равнодействующая не совершает полного оборота, а колеблется на ограниченном участке окружности дорожки качения кольца, например, подшипники дробильных машин, насосов, транспортеров и т.д.

Величина минимального натяга для циркуляционно-нагруженного кольца зависит от интенсивности радиальной нагрузки, определяемой по формуле:

P = R /(B – (r r 1))K 1 K 2 K 3 ,

где Р – интенсивность радиальной нагрузки, H/мм; кН/м;

R – радиальная реакция опоры в подшипнике, Н; (кН);

В (r и r 1 ) –- ширина подшипника, мм;

r и r 1 – радиусы закругления на торцах кольца подшипника, мм;

K 1 – динамический коэффициент посадки, зависящий от допустимой перегрузки (принимать K 1 = 1 при перегрузке до 150 %, когда толчки и вибрации умеренные; K 1 = 1,8 при перегрузке до 300 %, когда удары и вибрация сильные);

K 2 – коэффициент, учитывающий ослабление посадочного натяга при пониженной жесткости вала или корпуса (полый вал или тонкостенный корпус); для жесткой конструкции K 2 = 1 (таблица 5.10);

K 3 – коэффициент неравномерности распределения радиальной нагрузки между рядами тел качения в двухрядных роликоподшипниках и сдвоенных шарикоподшипниках при наличии осевой нагрузки на опору определяется (таблица 5.11). Для однорядных подшипников K 3 = 1.

Выбор посадки кольца при циркуляционном виде нагружения производить по таблице 5.12, а для местнонагруженного кольца – по таблице 5.13.

Таблица 5.9 – Предельные отклонения внутреннего и наружного колец подшипника по ГОСТ 520

Номинальный диаметр кольца

Радиальные и радиально-упорные подшипники

Роликовые конические подшипники

Классы точности подшипника

Внутреннего d , мм

Нижнее отклонение

L d = ∆ d тр , мкм (L 0; L 6; L 5; L 4; LN ; L 6X )

Свыше10до18

“ 80 до 120

“ 120 до 180

“ 180 до 250

Наружного D , мм

Нижнее отклонение

l D = ∆ D тр , мкм (l 0; l 6; l 5; l 4; lN ; l 6X )

Свыше18до30

“ 80 до 120

“ 120 до 150

“ 150 до 180

“ 180 до 250

“ 250 до 315

“ 315 до 400

Примечание: Для всех подшипников всех классов точности верхнее отклонение для внутреннего и наружного колец равно нулю.

Рисунок 5.10 – Основные отклонения и поля допусков присоединительных размеров подшипников качения и посадочных мест их монтажа: а – отверстия корпусов;б – валов;I– для обеспечения посадок с зазором;II– для обеспечения посадок с натягом;III– для обеспечения посадок с натягом в тонкостенных корпусах или на полых валах;l d – поле допуска наружного кольца (l 0; l 6; l 5; l 4; l 2; lT );L d – поле допуска внутреннего кольца (L 0; L 6; L 5; L 4; L 2; LT )

Таблица 5.10 – Значение коэффициента К 2

d отв /d илиD /D кор

D /d ≤ 1,5

D /d = 1,5…2

D /d > 2

Для корпуса

Свыше 0 до 0,4

Примечание: D ,d – диаметры колец подшипника;d отв – диаметр отверстия полого вала;D кор – диаметр наружной поверхности тонкостенного корпуса.

Таблица 5.11 – Значение коэффициента К 3

Таблица 5.12– Выбор посадки для циркуляционно-нагруженного кольца

Допускаемые интенсивности нагрузок Р ,H/мм

Номинальный диаметр отверстия внутреннего кольца d , мм

Поля допусков для валов

js 6; js 5

k 6; k 5

m 6; m 5

n 6; n 5

св.300до 1400

св.1400до1600

св.1600до3000

Номинальный диаметр наружного кольца D , мм

Поля допусков для корпусов

K 7; K 6

M 7; M 6

N 7; N 6

св.50 до 180

св.800 до1000

св.1000до1300

св.1300до2500

Характер нагрузки

Размер посадочного диаметра, мм

Поля допусков

Тип подшипника

в корпус стальной или чугунный

неразъемный

разъемный

Спокойный или с умеренными толчками и вибрацией, перегрузка до 150 %

h 5; h 6; g 5; g 6; f 6; js 6

H 6; H 7

H 6; H 7; H 8

Все, кроме штампованных и игольчатых

G 6;G 7

f 6; f 7;

F 7; F 8; E 8

С ударами и вибрацией, перегрузка до 300 %

h 5; h 6

Js 6; Js 7

Js 6; Js 7

Все, кроме штампованных, игольчатых и роликовых конических двухрядных

g 5; g 6

H 6; H 7; K 7

Назначение квалитета посадочных поверхностей

Класс точности подшипника

Отверстия

0; N ; 6; 6X

IT 6; IT 5

IT 7; IT 6

5; 4; 2; T

IT 6…IT 4

IT 6; IT 5

Примечание: При выборе квалитета учитывать класс точности подшипника, чем точнее подшипник, тем точнее должны быть образованы посадочные поверхности.

Выбор правильной посадки, обеспечение требуемой чистоты и значения допусков размеров поверхностей под подшипники является ключевым фактором, обеспечивающим долговечность, надежность механизмов.

Правильная посадка – важнейшее условие работоспособности подшипников.

Исходя из особенностей работы подшипника, кольцо, которое вращается должно закрепляться на опорной поверхности неподвижно, с натягом, а неподвижное кольцо садиться в отверстие с минимальным зазором, относительно свободно.

Установка с натягом вращающегося кольца не дает ему проворачиваться, что могло бы привести к износу опорной поверхности, контактной коррозии, разбалансировке подшипников, развальцовке опоры, чрезмерному нагреву. Так, в основном, выполняется посадка подшипника на вал, который работает под нагрузкой.

Для неподвижного кольца небольшой зазор даже полезен, а возможность проворота не чаще одного раза за сутки делает износ опорной поверхности более равномерным, минимизирует его.

Основные термины

Рассмотрим подробнее основные термины и понятия, определяющие посадки подшипников. Современное машиностроение основано на принципе взаимозаменяемости. Любая деталь, изготовленная по одному чертежу должна устанавливаться в механизм, выполнять свои функции, быть взаимозаменяемой.

Для этого чертеж определяет не только размеры, но и максимальные, минимальные отклонения от них, то есть допуски. Значения допусков стандартизованы единой системой для допусков, посадок ЕСДП, разбиты по степеням точности (квалитетам), приводятся в таблицах.

Их также можно найти в первом томе Справочника конструктора-машиностроителя Анурьева, и ГОСТах 25346-89, а также 25347-82 или 25348-82.

Согласно ГОСТ 25346-89 определены 20 квалитетов точности, но в машиностроении обычно используются с 6 по16. Причем, чем ниже номер квалитета, тем выше точность. Для посадок шарико и роликоподшипников актуальны 6,7, реже 8 квалитеты.

В пределах одного квалитета размер допуска одинаков. Но верхнее и нижнее отклонение размера от номинала расположены по-разному и их сочетания на валах и отверстиях образуют различные посадки.

Существуют посадки обеспечивающие гарантию зазора, натяга и переходные, реализующие как минимальный зазор, так и минимальный натяг. Посадки обозначают латинскими строчными буквами для валов, большими для отверстий и цифрой, указывающей на квалитет, то есть степень точности. Обозначения посадок:

  • с зазором a, b, c, d, e, f, g, h;
  • переходных js, k, m, n;
  • с натягом p, r, s, t, u, x, z.

По системе отверстия для всех квалитетов оно имеет допуск H, а характер посадки определяется допуском вала. Такое решение позволяет уменьшить количество необходимых контрольных калибров, инструмента режущего и является приоритетным. Но в отдельных случая используется система вала, в которой валы имеют допуск h, а посадка достигается обработкой отверстия. И именно таким случаем является вращение наружного кольца шарикоподшипника. Примером подобной конструкции могут служить ролики или барабаны натяжные конвейеров ленточных.

Выбор посадки подшипников качения

Среди основных параметров определяющих посадки подшипников:

  • характер, направление, величина нагрузки, воздействующей на подшипник;
  • точность подшипника;
  • скорость вращения;
  • вращение или неподвижность соответствующего кольца.

Ключевое условие, определяющее посадку – неподвижность либо вращение кольца. Для неподвижного кольца подбирается посадка с малым зазором и постепенное медленное проворачивание считается положительным фактором, уменьшающим общий износ, препятствующим местному износу. Вращающееся кольцо обязательно сажают с надежным натягом, исключающим проворот по отношению к посадочной поверхности.

Следующим важным фактором, которому должна соответствовать посадка под подшипник на валу или в отверстии, является вид нагружения. Различают три ключевых типа нагружения:

  • циркуляционное при вращении кольца относительно постоянно действующей в одном направлении радиальной нагрузки;
  • местное для неподвижного кольца относительно радиального нагружения;
  • колебательное при радиальной нагрузке колеблющейся относительно положения кольца.

Согласно степени точности подшипников в порядке их увеличения соответствуют пяти классам 0,6,5,4,2. Для машиностроения при нагрузках невысокой и средней величины, например для редукторов, обычным является класс 0, который не указывается в обозначении подшипников. При более высоких требованиях к точности используется шестой класс. На повышенных скоростях 5,4 и только в исключительных случаях второй. Пример шестого класса 6-205.

В процессе реального проектирования машин посадка подшипника на вал и в корпус выбирается в соответствие с условиями работы по специальным таблицам. Они приведены в томе втором Справочника конструктора-машиностроителя Василия Ивановича Анурьева.

Для местного типа нагрузки таблица предлагает следующие посадки.

При условиях циркуляционного нагружения, когда радиальное усилие воздействует на всю дорожку качения, учитывают интенсивность нагружения:

Pr=(k1xk2xk3xFr)/B , где:
k1 – коэффициент перегрузки динамической;
k2 – коэффициент ослабления для полого вала или корпуса тонкостенного;
k3 – коэффициент, определяемый воздействием осевых усилий;
Fr – усилие радиальное.

Значение коэффициента k1 при перегрузках менее, чем в полтора раза, небольшой вибрации и толчках принимают равным 1, а при возможной перегрузке от полутора до трех раз, сильных вибрациях, ударах k1=1,8.

Значения k2 и k3 подбираются по таблице. Причем для k3 учитывают соотношение осевой нагрузки к радиальной, выраженное параметром Fc/Fr x ctgβ.

Соответствующие коэффициентам и параметру интенсивности нагружения посадки подшипников приведены в таблице.

Обработка посадочных мест и обозначение посадок под подшипники на чертежах.

Посадочное место под подшипник на валу и в корпусе должно иметь заходные фаски. Шероховатость посадочного места составляет:

  • для шейки вала диаметром до 80 мм под подшипник класса 0 Ra=1,25, а при диаметре 80…500 мм Ra=2,5;
  • для шейки вала диаметром до 80 мм под подшипник класса 6,5 Ra=0,63 а при диаметре 80…500 мм Ra=1,25;
  • для отверстия в корпусе диаметром до 80 мм под подшипник класса 0 Ra=1,25, а при диаметре 80…500 мм Ra=2,5;
  • для отверстия в корпусе диаметром до 80 мм под подшипник класса 6,5,4 Ra=0,63, а при диаметре 80…500 мм Ra=1,25.

На чертеже также указывают отклонение формы места посадки подшипников, торцовое биение заплечиков для их упора.

Пример чертежа, в котором указана посадка подшипника на валу Ф 50 к6 и отклонения формы.

Значения отклонений формы принимаются по таблице в зависимости от диаметра, который имеет посадка подшипника на валу либо в корпусе, точности подшипника.

На чертежах указывают диаметр вала и корпуса под посадку, например, Ф20к6, Ф52Н7. На сборочных чертежах можно просто указывать размер с допуском в буквенном обозначении, но на чертежах деталей желательно кроме буквенного обозначения допуска приводить и его численное выражение для удобства рабочих. Размеры на чертежах указываются в миллиметрах, а величина допуска в микрометрах.