Open
Close

Как это сделано, как это работает, как это устроено. Как это сделано, как это работает, как это устроено Из чего создаются изделия

Инновационные технологии 3D в недавнем прошлом ставшие сенсацией, в настоящее время прочно вошли в нашу повседневную жизнь. 3D-фильмы, специальные очки и все прочее уже не считается чем-то этаким и диковинным. Объемное изображение захватывает внимание, обволакивает и заставляет почувствовать зрителя как-бы внутри него - это, безусловно, более интересно, чем привычный формат. Не стоят на месте и производители современных печатных устройств. Яркий тому пример – 3D-принтеры. Что это такое и как работает 3D-принтер, расскажем в этой статье.

Главная задача эти устройств – печать трехмерных моделей из различных материалов: бумаги, пластика или даже легких металлических сплавов, слои которых накладываются один на другой и склеиваются. Толщина одного слоя около 0,1 мм. По техническим характеристикам печати 3D-принтеры можно разделить на лазерные и струйные, как обычные принтеры.

Лазерная 3D-печать

Лазерная технология основана на стереолитографии (SLA), которая позволяет печатать трехмерные модели на основе CAD-чертежей. Принцип следующий – водянистый фотополимер просвечивается ультрафиолетовым лучом, тончайший слой практически мгновенно застывает. Специальная компьютерная программа разделяет трехмерную модель объекта на сотни тысяч таких слоев, и они ложатся один на другой, склеиваются особым клеем, застывают, и снова следующий слой по заданным параметрам. Так слой за слоем и вырастает готовая модель, в конце процесса она очищается от лишнего полимера, промывается и высушивается. Лазерная технология 3D-печати позволяет воспроизводить трехмерные модели высотой до 75 см.

Струйная 3D-печать

Струйная технология 3D-печати аналогична принципу работы обычного струйного принтера. Вместо краски используют специальный пластик, который сначала нагревается и плавится, затем наносится на основу микроскопическим слоем, и очень быстро застывает. Этот метод печати обычно называется методом лазерного спекания (SLS), и наряду с более выгодной по стоимости по сравнению с SLA-технологией, плюсом является возможность делать трехмерные модели из металла. Принцип работы 3D-принтера на основе технологии спекания дает возможность использовать для основы в качестве порошка различные полимерные материалы, а также керамику или стекло. Еще одно преимущество такого метода – некоторые модели принтеров позволяют в используемый клей добавлять краску, что позволяет создавать разноцветные модели.

Инновации и постоянное развитие 3D-печати создает дополнительные возможности не только для дизайнеров, но и для различных областей медицины, промышленного производства и многих других. Ведь с помощью такого устройства любую идею можно воплотить в реальную модель или прототип.

С начала нового тысячелетия понятие «3D» прочно вошло в нашу повседневную жизнь. В первую очередь, мы связываем его с киноискусством, фотографией или мультипликацией. Но едва ли сейчас найдётся человек, который хотя бы раз в жизни не слышал о такой новинке, как 3D-печать.

Что же это такое и какие новые возможности в творчестве, науке, технике и повседневной жизни несут нам технологии трехмерной печати, мы и попытаемся разобраться в статье, приведенной ниже.

Но сначала немного истории. Хоть и много стали говорить о 3D печати только последние несколько лет, на самом деле эта технология существует уже достаточно давно. В 1984 году компания Charles Hull разработала технологию трёхмерной печати для воспроизведения объектов с использованием цифровых данных, а двумя годами позже дала название и запатентовала технику стереолитографии.

Тогда же эта компания разработала и создала первый промышленный 3D принтер. Впоследствии эстафету приняла компания 3D Systems, разработавшая в 1988 году модель принтера для 3Д печати в домашних условиях SLA – 250.

В том же году компанией Scott Grump было изобретено моделирование плавлеными осаждениями. После нескольких лет относительного затишья, в 1991 году компания Helisys разрабатывает и выпускает на рынок технологию для производства многослойных объектов, а через год, в 1992, в компании DTM выходит в свет первая система селективного лазерного спаивания.

Затем, в 1993 году основывается компания Solidscape, которая и приступает уже к серийному производству принтеров на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, причём при относительно небольших затратах.

Тогда же Массачусетский университет патентует технологию трёхмерной печати, подобную струйной технологии обычных 2D принтеров. Но, пожалуй, пик развития и популярности 3D печати всё же пришёлся на новый, 21 век.

В 2005 году появился первый , способный печатать в цвете, это детище компании Z Corp под названием Spectrum Z510, а буквально через два года появился первый принтер, способный воспроизводить 50% собственных комплектующих.

В настоящее время круг возможностей и сфер применения 3Д печати постоянно растёт. Этим технологиям оказалось подвластно всё - от кровеносных сосудов до коралловых рифов и мебели. Впрочем, о сферах применения данных технологий мы поговорим чуть позже.

Итак, что же представляет из себя печать на 3d принтере?

Вкратце - это построение реального объекта по созданному на компьютере образцу 3D модели. Затем цифровая трёхмерная модель сохраняется в формате STL-файла, после чего 3D принтер, на который выводится файл для печати, формирует реальное изделие.

Сам процесс печати – это ряд повторяющихся циклов, связанных с созданием трёхмерных моделей, нанесением на рабочий стол (элеватор) принтера слоя расходных материалов, перемещением рабочего стола вниз на уровень готового слоя и удалением с поверхности стола отходов.

Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий, элеватор снова опускается и так до тех пор, пока на рабочем столе не окажется готовое изделие.

Как работает 3D принтер?

Применение трехмерной печати – это серьезная альтернатива традиционным методам прототипирования и мелкосерийному производству. Трёхмерный, или 3д-принтер, в отличие от обычного, который выводит двухмерные рисунки, фотографии и т. д. на бумагу, даёт возможность выводить объёмную информацию, то есть создавать трёхмерные физические объекты.

На данный момент оборудование данного класса может работать с фотополимерными смолами, различными видами пластиковой нити, керамическим порошком и металлоглиной.

Что такое 3d принтер?

В основу принципа работы 3d принтера заложен принцип постепенного (послойного) создания твердой модели, которая как бы «выращивается» из определённого материала, о котором будет сказано немного позже. Преимущества 3D печати перед привычными, ручными способами построения моделей - высокая скорость, простота и относительно небольшая стоимость.

Например, для создания или какой-либо детали вручную может понадобиться довольно много времени - от нескольких дней до месяцев. Ведь сюда входит не только сам процесс изготовления, но и предварительные работы - чертежи и схемы будущего изделия, которые всё равно не дают полного видения окончательного результата.

В итоге значительно возрастают расходы на разработку, увеличивается срок от разработки изделия до его серийного производства.

3D технологии же позволяют полностью исключить ручной труд и необходимость делать чертежи и расчёты на бумаге - ведь программа позволяет увидеть модель во всех ракурсах уже на экране, и устранить выявленные недостатки не в процессе создания, как это бывает при ручном изготовлении, а непосредственно при разработке и создать модель за несколько часов.

При этом возможность ошибок, присущих ручной работе, практически исключается.

Что такое 3d принтер: видео

Существуют различные технологии трёхмерной печати. Разница между ними заключается в способе наложения слоёв изделия. Рассмотрим основные из них.

Наиболее распространенными являются SLS (селективное лазерное сплетение), НРМ (наложение слоев расплавленных материалов) и SLA (стереолитиография).

Наиболее широкое распространение благодаря высокой скорости построения объектов получила технология стереолитографии или SLA.

Технология SLA

Технология работает так: лазерный луч направляется на фотополимер, после чего материал затвердевает.

В качестве фотополимера используется полупрозрачный материал, который деформируется под действием атмосферной влаги.

После отвердевания он легко поддаётся склеиванию, механической обработке и окрашиванию. Рабочий стол (элеватор) находится в ёмкости с фотополимером. После прохождения через полимер лазерного луча и отвердения слоя рабочая поверхность стола смещается вниз.

Технология SLS

Спекание порошковых реагентов под действием лазерного луча – оно же SLS - единственная технология 3D печати, которая применяется при изготовлении форм, как для металлического, так и пластмассового литья.

Пластмассовые модели обладают отличными механическими качествами, благодаря которым они могут использоваться для изготовления полнофункциональных изделий. В SLS технологии используются материалы, близкие по свойствам к маркам конечного продукта: керамика, порошковый пластик, металл.

Устройство 3d принтера выглядит следующим образом: порошковые вещества наносятся на поверхность элеватора и спекаются под действием лазерного луча в твёрдый слой, соответствующий параметрам модели и определяющий её форму.

Технология DLP

Технология DLP – новичок на рынке трехмерной печати. Стереолитографические печатные аппараты сегодня позиционируются, как основная альтернатива FDM оборудованию. Принтеры данного типа используют технологию цифровой обработки светом. Многие задаются вопросом, чем печатает 3d принтер данного образца?

Вместо пластиковой нити и нагревающей головки для создания трехмерных фигур используются фотополимерные смолы и DLP-проектор.

Ниже вы можете увидеть, как работает 3d принтер видео:

Впервые услышав про DLP 3d принтер, что это такое – вполне резонный вопрос. Несмотря на замысловатое название, устройство почти не отличается от других настольных печатных аппаратов. К слову, его разработчики, в лице компании
QSQM Technology Corporation, уже запустили в серию первые образцы высокотехнологичного оборудования. Выглядит оно следующим образом:

Технология EBM

Стоит отметить, технологии SLS/DMLS – далеко не единственные в области . В настоящее время для создания металлических трехмерных объектов широко используется электронно-лучевая плавка. Лабораторные исследования показали, что использование металлической проволоки для послойного наплавления при изготовлении высокоточных деталей малоэффективно, поэтому инженеры разработали специальный материал – металлоглину.

Металлическая глина, использующаяся в качестве чернил во время электронно-лучевой плавки изготавливается из смеси органического клея, металлической стружки и определенного количества воды. Для того чтобы превратить чернило в твердый объект, его нужно нагреть до температуры, при которой клей и вода выгорят, а стружка сплавится между собой в монолит.

EBM 3d принтер: как работает

Примечательно, что данный принцип также используется при работе с SLS принтерами. Но в отличие от них, EBM-аппараты генерируют для плавки металлоглины направленные электронные импульсы вместо лазерного луча. Нужно сказать, что данный метод обеспечивает высокое качество печати и отличную прорисовку мелких деталей.

На сегодняшний день продаются только промышленные принтеры, использующие EBM технологию. Вот как выглядит один из них:

На видео, представленном ниже, наглядно продемонстрированы возможности 3d принтера, приспособленного для электронно-лучевой плавки:

Технология НРМ (FDM) HPM

Даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Это единственная технология, использующая термопластики производственного класса, обеспечивающие не имеющую аналогов механическую, термическую и химическую прочность деталей.

Печать по технологии НРМ выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Растворимые вспомогательные материалы позволяют создавать сложные многоуровневые формы, полости и отверстия, которые было бы проблематично получить обычными методами. 3D-принтеры, действующие по технологии НРМ, создают детали слой за слоем, разогревая материал до полужидкого состояния и выдавливая его в соответствии созданными на компьютере путями.

Для печати по технологии НРМ используется два различных материала - из одного (основного) будет состоять готовая деталь, и вспомогательного, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой.

Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Интересно, что в наши дни популярностью пользуются не только автоматические настольные HPM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов.

Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло! При должной сноровке получаются вот такие оригинальные декоративные фигурки:

Ну и конечно, так же, как и технологии, отличаются друг от друга и сами принтеры. Если у вас принтер, работающий по SLA, то технологию SLS на нём применить будет невозможно, т. е. каждый принтер создан только под определённую технологию печати.

Цветная 3D-печать

Данная технология единственная в своем роде, которая позволяет получать объекты во всем доступном диапазоне оттенков. Примечательно, что окрашивание изделий происходит непосредственно во время их изготовления. С ее помощью получаются фотореалистичные объекты. Это и вызывает неподдельный интерес к ней со стороны дизайнеров.

Зачастую в качестве исходного материала применяют порошок, созданный на основе гипса. Щетки и ролики формируют не очень толстый слой расходника. Дальше с помощью подвижной головки на необходимые участки наносятся микрокапли клееобразного вещества (перед этим его окрашивают в нужный цвет). Оно напоминает по своему составу цианокрилат. Послойно создается готовый разноцветный объект. Финальная обработка изделия цианоакрилатом обеспечивает ему блеск и жесткость.

Промышленные и настольные цветные 3D-принтеры

Современный рынок предлагает различные многоцветные 3D-принтеры. С их помощью создаются разноцветные объекты в домашних условиях. Большинство агрегатов предназначено для профессионального использования.

Профессиональная цветная печать на 3D-принтере осуществляется с помощью:

1. Линейки Zрrintеr от известной торговой марки 3D Sуstems. Эти устройства могут создавать габаритные разноцветные объекты. Снабжаются 5-ю картриджами и системой автоматической загрузки порошка. Техника практически на 100% автоматизирована, поэтому настройка или контроль процесса печати не обязателен. Весят модели около 340 килограмм. Стоимость в пределах 90-130 тысяч долларов.

2. Полноцветный 3D-принтер Мсor Iris. Разноцветные изделия создаются путем склеивания отдельных бумажных клочков. Данный агрегат от Мсоr Тесhnologies Ltd создает объемные фотореалистичные модели с неплохими показателями прочности. Может генерировать до миллиона цветов. Стоит 15 тысяч долларов.

Настольные модели для домашнего использования:

1. Цветной 3D-принтер 3D Тоuch. Данный агрегат работает по технологии FDМ. Модель может снабжаться одной, двумя или даже тремя экструзионными головками. Работает с АВS или РLА-пластиком. Весит ни много ни мало 38 килограмм. Стоимость – около 4 тысяч долларов.

2. 3D-принтер трехцветный ВFB 3000 РАNTHER – первый цветной принтер, который был выпущен на рынок. Сегодня его стоимость составляет около 2,5 тысяч долларов. В качестве рабочего материала применяется стандартная пластиковая нить. Для работы понадобится нить трех цветов.

3. Одна из самых дешевых моделей – РroDеsk3D. Для создания изделий используется система из пяти картриджей. Возможна работа с РLA или АВS-пластиком. Принтер снабжен системой автоматической настройки. Стоит всего 2 тысячи долларов. К сожалению, не может похвастаться высокими показателями разрешения печати.

Области применения 3D печати

3D печать открыла большие возможности для экспериментов в таких сферах как архитектура, строительство, медицина, образование, моделирование одежды, мелкосерийное производство, ювелирное дело, и даже в пищевой промышленности.

В архитектуре, например, 3D печать позволяет создавать объёмные макеты зданий, или даже целых микрорайонов со всей инфраструктурой - скверами, парками, дорогами и уличным освещением.

Благодаря используемому при этом дешёвому гипсовому композиту обеспечивается низкая себестоимость готовых моделей. А более 390 тысяч оттенков CMYK позволяют в цвете воплотить любую, даже самую смелую фантазию архитектора.

3d принтер: применение в области строительства

В строительстве есть все основания предполагать, что в недалёком будущем намного ускорится и упростится процесс возведения зданий. Калифорнийскими инженерами создана система 3D печати для крупногабаритных объектов. Она работает по принципу строительного крана, возводящего стены из слоёв бетона.

Такой принтер может возвести двухэтажный дом всего в течение 20 часов.

После чего рабочим останется лишь провести отделочные работы. 3D House Постепенно завоёвывают прочные позиции 3D принтеры и в мелкосерийном производстве.

В основном эти технологии используются для производства эксклюзивных изделий, таких как предметы искусства, фигурки персонажей для ролевых игр, прототипов моделей будущих товаров или каких-либо конструктивных деталей.

В медицине благодаря технологиям трёхмерной печати врачи получили возможность воссоздавать копии человеческого скелета, что позволяет более точно отработать приёмы, повышающих гарантии успешного проведения операций.

Всё большее применение находят 3D принтеры в области протезирования в стоматологии, так как эти технологии позволяют намного быстрее получить протезы, чем при традиционном изготовлении.

Не так давно немецкими учёными была разработана технология получения человеческой кожи. При её изготовлении используется гель, полученный из клеток донора. А в 2011 году учёным удалось воспроизвести живую человеческую почку.

Как видим, возможности, которые открывает 3D печать практически во всех сферах деятельности человека поистине безграничны.

Принтеры, создающие кулинарные шедевры, воспроизводящие протезы и органы человека, игрушки и наглядные пособия, одежду и обувь - уже не плод воображения писателей - фантастов, а реалии современной жизни.

А какие ещё горизонты откроются перед человечеством в ближайшие годы, наверное, это может быть ограничено только фантазией самого человека.

Поступили вопросы как его правильно купить. Делюсь опытом.

Первый принтер, как первая женщина: должен быть у каждого реального пацана, но с какой стороны к нему подходить в школе не сказали. Я вам тут скажу по-секрету, только никому не рассказывайте!

И выбирать первый 3D принтер так же бессмысленно, как выбирать первую женщину, если только не собираетесь умереть с ним в один день. Всякие модные фишки типа автовыравнивания и двойного экструдера гарантируют ощущения зеленого школяра на свидании с сильно образованной барышней: можно долго ходить кругами и так и не получить главного.
Речь идет о принтерах начального уровня за $150 - $300. Для реальных мажоров, покупающих в комплекте с принтером технолога, программиста, схемотехника и массажиста, действуют совсем другие правила.

Правило №1 Брать надо китай в России
Потому что европейские комплектующие, они могут быть качественнее, но разницу новичок скорее всего не поймет. И сломать по неопытности можно все что угодно. Ну, а российское производство при кратно большей цене .
Но, главное "но" в том, что наше российское таможенное законодательство считает принтер за $200 промышленным оборудованием и облагает его ввозной экспортной пошлиной 30%. Это же не игрушка и не управляемая модель. Имеет право, но не всегда им пользуется.
Я лично купил принтер для ребенка в образовательных целях. И вы берете его для ознакомления с аддитивными технологиями, а не для импортозамещения. Но таможня против. Хотя последнее время не лютует.
Поэтому умные китайцы отправляют нам принтеры из России, так что нам не надо общаться с таможней (это ваще отдельный экстрим). Главное найти на aliexpress.com именно умного китайского продавца, предлагающего отправку именно из России, а не из Китая. Не важно как они это делают, важно что это у них получается - проверено.
Ежели вы таки возьмете из-за границы, имейте в виду - все что относится к 3D печати будет облагаться пошлиной 30%. Некоторые попали, но большинство пронесло.

Правило №2 Какую модель 3D принтера лучше брать
Явного лидера в начально-образовательном уровне, как например Лего в начальной робототехнике, еще нет. Поэтому успешно применяется техника выбора "я б вдул": если глядя на фото принтера на страничке продавца в голову приходит такая мысль, то можно брать. Разница между разными моделями не принципиальна: все они печатают, и качество печати достаточно для новичка и недостаточно для промышленного производства. Все остальное на вкус и цвет, и не поймешь пока не попробуешь. Именно на пробу и берется первый принтер.

Правило №3 Как выбрать продавца
Как уже было указано в первом правиле, продавец должен быть умным. И, в-общем-то, это все. Это все, что можно достоверно установить. Все остальное недостоверно.
Одним посылка идет долго, другим быстро. В основном, это наша таможня и почта. Приходят все посылки в Москву, а на растаможку их могут отправить в Брянск или куда подальше. Конечно, потом снова через Москву. Если брать с доставкой из России, задержка по причине таможни исключается.
Продавцы обычно отправляют в течение недели, а если опоздают, то деньги вам вернут автоматом. Одним принтер приходит в целости и сохранности, а другим с поломками и некомплектом. Китайцы тоже халтурят, и у них также может закончиться правильная упаковка. Этого не предугадать. Снимайте на видео весь процесс от получения посылки до проведения инвентаризации ее содержимого, это реально поможет получить компенсацию, если что.
Одним продавец дает ценные советы по сборке и настройке, другим ваще не отвечает. Не рассчитывайте на техподдержку, это же DIY, что переводится на русский "сделай это сам".
Ни отзывы, ни количество заказов, ни обещания продавца не являются решающим фактором выбора продавца. Продавец может поменяться незаметно. Отзывы могут относиться к другому товару. Мухлевать они умеют.
Это лотерея, примите это и не страдайте, если что-то пошло не как хотелось.

Правило №4 Что брать в комплекте
Нет особого смысла выбирать вариант "+ три упаковки пластика в подарок". Это не подарок, это включено в цену. В России пластик стоит не дороже, ищите российские специальные интернет-магазины и берите дешевле, если вам это нужно. Китайский пластик может быть как хорошим, так и плохим.
Набирать разных запчастей особого смысла нет, но если прям очень хочется, то можно и взять. Сопла забиваются, их можно чистить и менять. Нагревательные элементы перегорают. Концевые ограничители барахлят. И т.п., примерно так можно ориентироваться, на свой вкус. Что реально потребуется не угадать, поэтому в идеале удобно брать на запчасти второй такой же принтер, ага.
Точно надо брать прошивку. Это бесплатно, надо просто попросить продавца, чтобы он выслал вам драйвера, firmware и bootloader, а также Arduino IDE пригодную для них. Весит это все в пределах 10Мб, так что емайл подходит.
Точно надо брать программатор. Встречаются посты типа "два дня принтер работал и перестал". Это слетела прошивка. Или слетел загрузчик. Скорее то и другое. Загрузчик это первая часть прошивки, которая запускает основную часть. Для записи на плату принтера загрузчика нужен программатор. Основная прошивка записывается на плату без программатора.
Программаторов разных много. Рекомендую Arduino NANO. Стоит в пределах $3. Вместе с программатором надо брать проводки для подключения его к плате: 4 штуки с разъемом "мама" на обоих концах, чем короче тем лучше.

Правило №5 Забудьте про техподдержку
Продавцы не делают 3D принтеры, они их продают. Если в штате продавца случайно окажется кто-то понимающий и у него будет время, вам что-нибудь подскажут. Но 3D это целая наука, миллион нюансов и миллиард вариантов, так что курс лекций вам точно не дадут. Читайте интернет и не расстраивайтесь на китайцев. Все решаемо, нужно просто найти. Если у вас нет времени, не стоит за это браться совсем.

Правило №6 Спорьте
Не надо подтверждать получение на Али при получении посылки. Вы подтверждаете не факт получения, а комплектность и работоспособность. Так что проверяйте. С чувством, с толком, не спеша.
Да, вам напишут и попросят поторопиться. Ответ прост: надо больше времени на проверку.
Если закончилось время, надо открыть спор. Основание спора: возможные дефекты. "Может их и нету, надо разобраться."
Если что-то не получается включить/запустить и китаец не помогает, надо вызывать арбитров Али. Для этого нужно очень подробно изложить что вы ожидали получить (как оно на ваш взгляд должно работать), что вы для этого сделали и что не получилось. Также нужно качественно подготовить фото и видео. На фото надо сделать пометки для пояснений. Видео нужно сделать достаточного качества для спокойного разглядывания.
Залить видео на 500 Мб через великий китайский фаервол непросто, практически невозможно. Поэтому его надо ужать. Это можно сделать на ютубе, там хороший ужимальщик.
От качества подготовки доказательной базы зависит возврат денег. Поэтому надо взять за правило снимать на видео каждый значимый шаг. Получили на почте лепешку из картона - виноват китаец, плохо упаковал. Перепутали провода и все сгорело? Виноват китаец - нет инструкции, провода не помечены. Главное чтобы с той стороны фаервола можно было понять, что вы приложили максимум усилий. Для этого снимать процесс получения на почте, процесс вскрытия, и т.д. и т.п. И чтобы очень было похоже на правду.

И в завершение дам свой кейс по спору.
На второй день принтер не включился.
Как потом выяснилось, если таскать оси руками туда-сюда, моторы работают в режиме генератора и плата от этого не защищена. Не надо двигать моторы руками (быстро).
Открыл диспут.
Китаец предложил попробовать перепрошиться.
Прошивки у китайца не было. Предложил поискать в нете.
Отправил видео процесса неудачной прошивки. Точнее, первая найденная прошивка даже не компилировалась. Китаец в этом ничего не понимал, так что этого оказалось достаточно.
Написал в спор что плата не работает, прошивка не заливается.
Китаец предложил отправить плату на замену.
Я указал, что принтер на ДР ребенка и за две недели плата не дойдет.
Китаец предложил экспресс-отправку. Я согласился.
После получения и проверки трека я закрыл спор.

С пятого - десятого раза нашлась прошивка, для которой удалось подобрать версию IDE для компиляции.
Прошить не получилось. Оставалась возможность слетевшего загрузчика.
Для платы Мелзи есть несколько вариантов загрузчика. С 10 - 20 раза нашелся подходящий загрузчик, он и в норме может шиться не с первого раза.
После прошивки загрузчика основная прошивка заливается без проблем.
Подправил в прошивке настройки под свой принтер и все работает с тех пор без проблем. Вообще без проблем.

Через три недели пришла вторая плата.

Ребенок в восторге. Печатает с удовольствием. Вот вчера напечатал.

Объемная печать активно вошла в жизнь обывателей в 2005 году. Именно тогда появились первые устройства, которые обладали полным функционалом для создания трехмерного образа. Но и на настоящий день не многие пользователи знают, в чем особенность этого прибора. В этой статье мы расскажем, что печатает 3Д (3D) принтер, как с ним работать и что можно распечатать на нем.

История возникновения технологии

Идея создавать объекты в пространстве появилась еще в далеком 1953, когда появились первые обыкновенные плоскостные АЦПУ. Тогда они были еще черно-белыми, но уже тогда разработчики задумывались о моделировании в объеме.

Над созданием проекта и его воплощением в жизнь работали ученые из разных стран на протяжении полувека. Первый прорыв принадлежит Чаку Халлу, который сделал машину, основанную на лазерной стереолитографии. Суть проекта в использовании лазера и жидких фотополимеров. Перемещающаяся платформа основания помогает по заданным вычислениям направлять луч и выстраивать осевые вертикальные полосы. После этого накладываются горизонтальные пластины, образуя фактуру.

Полимер затвердевает под воздействием высоких температур в слои не шире 0,2 мм. Для ровного застывания вещества на постоянной основе работают механические щеточки, обеспечивая высыхание поверхности. Уже объемный объект погружают в специальный раствор для сглаживания шероховатостей и устранения излишков. На финальной стадии образец повторно облучают. Минусом технологии был несбалансированный состав смолы – фотополимер застывал недостаточно крепко или, наоборот, моментально. Преимущество SLA-принтеров – их скорость работы, но само оборудование и расходный материал имеет высокую цену.

Скотт Крамп в конце 80-х создал абсолютно новый метод, который заключался в послойном наплавлении – FDM. Именно он лежит в основе современных приборов. Вещество, задействованное в работе, – термопластинки. Они выглядят как моток твердых нитей. Именно они наносятся слоями, повторяя контур цифровой модели.

Первый вошедший в продажу принтер появился в 1995 году. Его анонсировала компания «3D Systems». Но изделие «Actua 2100» работало медленно, в чем был его основной недостаток. И только спустя 10 лет была разработана модель «Reprap», в которой были устранены распространенные ошибки предыдущей партии. С этого момента в мире науки и производства начался этап трехмерного моделирования.

3D принтер: что это такое и как работает чертеж 3Д

Объемная печать, в зависимости от сфер применения, может использовать различные принципы работы и состав полимеров, но основной технологией остается послойное наращивание пластов на объект.

Этапы проектирования:


Разновидности технологий 3Д принтеров

На данный момент соревнуются три вида аппаратов:

  • FDM (fused deposition modeling);
  • LOM (laminated object manufacturing);
  • SLA и STL (Stereolithography).

Также есть такие варианты, как:

  • Polyjet;
  • LENS;
  • LS (laser sintering);
  • 3DP (three dimensional printing).

Рассмотрим некоторые из них более подробно.

Стереолитографические установки – что это такое для 3D печати


SLA или просто SL – это усовершенствованная система-прародитель. Ее истоки были положены Чаком Халлом, но на настоящий момент многие компании производят технику, основанную на принципе стереолитографии. В основу положены все те же материалы – жидкий фотополимер, запекающийся в пластик, и лазер. Луч как бы фиксирует определенные точки в емкости с жидкостью, постепенно поднимаясь снизу вверх слой за слоем. Оставшийся раствор стекает, оставляя необходимость шлифовки объекта.

Это очень эффективный, с точки зрения точности, метод. Он позволяет быстро достигнуть результата с погрешностью всего в 10 микрон. Но оборудование редко устанавливают дома, так как работа с едким веществом без соблюдения должных норм и предосторожностей чревато ожогами и токсическим отравлением организма.

Лазерное спекание – LS (laser sintering)


Метод аналогичен предыдущему, но усовершенствован за счет использования не жидкого полимера, а его сыпучего варианта. Преимущества новшества:

  • В растворе нередки случаи поломки объекта еще в процессе построения, так как еще неокрепшую, но уже тяжелую конструкцию ничего не поддерживает. В порошке все иначе – деталь не может сломаться, так как она опирается на твердое вещество.
  • Помимо полимера можно использовать измельченные частицы бронзы, стали, нейлона, титана.

Недостатки:

  • Температура плавления очень высока, поэтому предмет долго будет остывать.
  • Поверхность получается менее монолитная, в ней больше воздуха.
  • Некоторые смеси опасно хранить вне камеры с азотом.

Что такое 3Д печать методом послойного наплавления термопласта

Технология LOM предусматривает наложение вырезанных по лекалу пластов из бумаги, пластмассы или алюминия и их последующее склеивание. Точные очертания рассчитываются в специализированных САПРах, которые работают с 3D моделями. Функция структурирования простых и сложных объектов в софте от компании «ЗВСОФТ» позволяет создавать органичные формы за счет нанесения эскиза на простую сетку и последующего детального сглаживания линий, проработки деталей вручную или автоматически.

С использованием специализированных платформ моделирование по системе LOM становится легким и удобным.


С термопластом работает также технология FDM. Ее структура заключается в подаче материала (нить из пластика) через экструдер – печатающую головку механизма. Направленный слой запекается за счет специального сопла. Так послойно происходит создание объекта снизу вверх.

Из чего создаются изделия

Вещество-основа может различаться. Самый популярный и начальный элемент – это фотополимер. Он легок в обращении, имеет низкую температуру плавления и удобен на стадии последующей обработки – шлифовки. На его замену пришел термопластик (видов ABS и PLA) – усовершенствованный материал с рядом преимуществ, в частности, он более безопасный и экологически чистый.


Также могут использоваться:

  • нейлон – высокая прочность и износостойкость;
  • поликарбонат – широкий спектр комфортных для изделия температур от -100 до +115 градусов;
  • полиэтилен;
  • поливиниловый спирт – быстро схватывается, но растворяется при соприкосновении с водой;
  • целлюлоза;
  • полипропилен – нетоксичный и недорогой;
  • флекс – очень гибкий и эластичный;
  • HIPS – удобен при необходимости многоуровневых конструкций со сложными спайками и поддержками;
  • glassfil – прозрачный и невосприимчивый к ультрафиолету, механическим воздействиям и бактерицидной атаке, поэтому часто применяется в медицине;
  • керамический состав – содержит только частицы керамики, но при печати создает эффект камня;

  • PVA – быстрорастворяемый полимер, который подходит для временного склеивания элементов конструкции;
  • PVD – тонкий пластик, который подходит для упаковочной вентилируемой продукции;
  • PETG – полупрозрачный материал, образующий красивую глянцевую поверхность, подходит для элементов декора;
  • полиоксиметилен – прочный как металл, но удобный в обращении и легкий;
  • WOOD – достоверная имитация дерева с сохранением свойств материала-оригинала, то есть с сильными влаговпитывающими характеристиками;
  • ABS Antistatic – обычный полимер с эффектом антистатика для изоляции от электричества;
  • GLOW – люминесцентное вещество, способное впитывать и отдавать свет;
  • металл – состав содержит в себе элементы бронзы, алюминия и других веществ, на выходе предмет, напоминающий настоящее металлическое изделие.

Области применения 3D печати

Сфер, где реализуется новая технология очень много, самые популярные из них:

  • Медицина. Давно началось производство протезов по индивидуальным параметрам. Такие искусственные части тела по виду и ощущениям практически идентичны натуральным.
  • Лекарственные препараты. За материал берется биологически активная добавка. Таким образом восполняется в точном количестве необходимый элемент.
  • Машиностроение и техника. Запасные части и сложные в производстве узлы стало легче сделать с помощью печати, чем задействовать несколько цехов.
  • Элементы одежды и обуви. Ранее было налажено производство застежек и декоративных частей, но с появлением тончайшего полимера начали выпускать целые модели.
  • Предметы искусства.
  • Биопечать – новое веяние в медицине. Работы проводятся с использованием аналогичных живым тканей.

Все о программном обеспечении для 3Д принтера

Моделирование и печать невозможны без специализированного САПРа. Компания «ЗВСОФТ» предлагает несколько программ для эффективной работы с 3D моделями:

– базовый CAD с широкими возможностями для расчета и проектирования объемных чертежей. Среди возможностей:

  • Создание и редактирование моделей привычными инструментами.
  • Взгляд на объект в перспективе – функция DVIEW.
  • Рендеринг части сцены.
  • Визуализация.
  • Интеграция большого количества форматов.
  • Удобный интерфейс.
  • Работа с динамическими блоками.
  • Возможность установки дополнительных надстроек.
  • Экспорт в форматы, поддерживаемые 3д принтерами (через дополнительные приложения).

– специализированный САПР для трехмерного конструирования. Достоинства:

  • Выгрузка объемных чертежей с трудной геометрией.
  • Реверсивный инжиниринг.
  • Принцип гибридного моделирования.
  • Расположение слоев на различных уровнях в одном файле.
  • Совместимость с большинством форматов.
  • Библиотека готовых и пополняемых деталей.
  • Поддержка всех форматов файлов 3d принтеров.

– приложение, которое идет к базовой платформе. Оно предназначено для проектирования объемных объектов и создания дизайна, поэтому большое внимание уделено проработке деталей. Преимущества:

  • Интуитивно понятный интерфейс.
  • Структурирование.
  • Работа с рельефами поверхности в RenderZone.
  • Округление линий.
  • Визуализация с поддержкой освещения.
  • Инструмент анализа NURBZ.
  • Прямой экспорт в STL.

В статье мы рассказали вам о принтере 3Д – как он выглядит, что из себя представляет и для чего нужен. Начиная работу в трехмерном пространстве, выбирайте удобное и многофункциональное программное обеспечение.

На мировом рынке всё большую популярность приобретают домашние 3D принтеры - это специальное устройство, которое позволяет выводить трёхмерную информацию, т.е. создавать физические объекты, в отличие от обычного принтера, который может выводить двухмерную информацию на листе бумаги краской. В основе 3D-печати лежит принцип послойного создания твёрдой модели.

3Д-принтеры успешно конкурируют на рынке с другими технологиями изготавливающими макеты из пластика, а также намного быстрее справляются с производственными задачами.

Что касается цен, то на сегодняшний день эти устройства стали более доступными для каждого, у кого есть желание пользоваться 3D-принтером в домашних условиях, к тому же они довольно-таки компактные на сегодняшний день. Предлагаем к рассмотрению варианты лучших моделей на производственных рынках.

Обзор лучших 3D принтеров

Домашний принтер для всей семьи, отличающийся компактностью, привлекательным дизайном и простотой использования - это Cube 3D. Он отлично подходит для развлечения и создания сувениров.

Программное обеспечение принтера Cube 3D. автоматически адаптируется к операционной системе на компьютере после подключения через USB. Преимуществом данной модели является простота использования и настройки, а также возможность передавать данные по Wi-Fi. Для печати используется специальный пластик ABS. Область печати составляет 14х14х14 см, масса - 4,3 кг (без картриджа). У него только одна печатающая головка, что выдаёт толщину слоя 250 микрон (0.25 мм). Одного картриджа хватает на 13-14 моделей средних размеров.

Основные преимущества:

  • простота установки программного обеспечения;
  • толщина слоя составляет 0,2мм.
Если вы искали принтер для всей семьи, то Cube 3D - отличный выбор. Стоимость данной модели 2500 - 2600 долларов (82 000 - 86 000 рублей).

Видео как работает Cube 3D Printer:


Следующий аппарат, предлагаемый вашему вниманию - это Cube X. Серия принтеров CubeX (Duo, Trio), модели, как вы поняли, отличаются только количеством печатающих головок, они значительно дороже предыдущих моделей, тем не менее, достаточно популярна среди потребителей России и других стран.

Cube X. опережает своего предшественника Cube 3D по технологическим характеристикам, т.к. может создать модель не в виде сувенира, а воссоздать любой предмет в натуральной величине. Данная модель 3D принтера печатает только в одном цвете, тем не менее, цветовая гамма богата оттенками, и это спасает ситуацию. Одна печатающая головка в Cube X, две головки в Cube X Duo и три в модели Cube X Trio. Область печати 27.5х26.5х24 см, для печати используется пластик PLA. Вес без картриджа составляет 36 кг.

Основные технические характеристики модели:

  • скорость печати 54 см3 в час (15 куб.мм в секунду, всё зависит от материала);
  • точность печати (0,1 мм);
  • автоматически устанавливается программное обеспечение;
  • есть возможность передачи данных по Wi-Fi.
Приобрести Cube X можно приблизительно за 3700 - 3900 долларов (примерно 128 000 рублей). С двумя головками (Duo) обойдётся за 4700$ (154 000 руб.). CubeX TRIO стоит 5700$ (187 000 руб.).

Видео работы принтеров серии Cube X:

3. 3Д принтер UP!


Фото UP! Plus


Наиболее дешёвый и простой в использовании - это серия UP! 3D принтеров (Plus, Plus 2 и Mini), отличаются дизайном, размерами и мелкими техническими характеристиками. Данный прибор выступает незаменимым устройством дома, для работы следует установить на компьютер программное обеспечение UP! Software, и всё готово к использованию. Вы можете печатать модели любой сложности, т.к. этот 3Д принтер автоматически определяет неустойчивые места и создаёт под них опоры, после печати они легко отсоединяются от основного объёма. Область печати данного устройства - 24х26х35 см, масса - 5 кг (модель Mini весит 6 кг.). Количество головок у всей линейки - 1. Для печати используется ABS пластик.


Фото UP! Mini


Основными характеристиками являются:
  • высокая скорость печати (0,15мм);
  • распознавание формата STL, сохранение в формате UP3;
  • просмотр 3D.
Приблизительная стоимость UP! 3D Printer Plus - 2300$ (75 000 руб.). Цена на UP! Plus 2 - 2400$ (79 000 руб.), а UP! 3D Mini Printer стоит приблизительно 1350 $ (45 000 руб.).

Видео - демонстрация работы UP! 3D Printer Plus:


Следующий домашний 3Д принтер - Felix 2.0 - достойный аппарат от компании FelixPrinters. Благодаря небольшому размеру устройства, данная модель очень удобна в использовании в домашних условиях. Преимуществом Felix 2.0 является высокая точность работы и качество изобретаемых изделий. Также он оснащён подогреваемым столом, чтобы изделие равномерно остывало.
Размеры устройства 45х50х53 см, масса - 6,7 кг.

Основные технические характеристики:

  • область печати 25, х20,5х23,5 см;
  • скорость печати 54 см3 в час;
  • толщина нити - 1,75 мм;
  • используемое программное обеспечение: Repetier Host, Slic3r Pronterface;
  • формат исходных, электронных файлов - .STL;
  • работает при помощи ОС Windows;
  • максимальная температура печати 280 °C;
  • энергопотребление - блок питания FlexATX, 12В 250Вт.
Расходные материалы - пластик PLA или ABS, а также нейлон. Стоимость Felix 2.0 составляет около 2550 $ (85 000 руб.).

Видео 3D printer Felix 2.0 в работе:

5. Picaso Builder


Picaso Builder - принтер, который может применяться при создании скульптур, архитектурных макетов, прототипов промышленного дизайна, подарков, сувениров и так далее, используя технологию струйной печати. Отличное решение, как для новичков трёхмерной печати, так и для профессионалов.

Технические характеристики 3D принтера Picaso Builder:

  • масса без картриджа - 6,5 кг;
  • размер без картриджа - 47?42,2х44,1 см;
  • расходными материалами является пластик PLA или ABS;
  • область печати - 20?20?20 см;
  • одна головка.
Среди преимуществ данной модели можно выделить:
  • механизм подачи не забивается материалом для производства макета;
  • скорость печати - 25 см в час;
  • толщина слоя очень маленькая и составляет 100 микрон (0,1мм);
  • толщина стенки 190 микрон (0,19 мм);
  • поддержка ОС Win/Mac, программное обеспечение Poligon (на русском языке).
Купить 3D принтер Picaso Builder можно в пределах 3100 - 3200 $ (104 000 руб.).

Видео: как работает Picaso Builder

Для создания необходимых моделей вручную может понадобиться несколько недель и даже месяцев, в результате увеличиваются сроки выпуска продукции и повышаются затраты на разработку. С помощью 3D-принтеров можно за несколько часов создать модель изделия и избавиться от ручного труда, исключая вероятность ошибок присущих человеку. Самое главное это незаменимый помощник в доме для создания замечательных сувениров, подарков, деталей крепления и не только. Прекрасный друг и товарищ вашему ребёнку и финансово доступный агрегат! Но перед тем как его купить, почитайте нашу статью: « для здоровья окружающих во время его работы».