Open
Close

Генератор импульсов на мигающем светодиоде. Как сделать мигающий светодиод. Модель прямоугольных импульсов с регулятором

Дополнив предыдущий генератор несколькими деталями, удастся получить светодиодную «мигалку» (рис. 2.3).

Генератор работает следующим образом. При включении источника питания конденсаторы С1 и С 2 начинают заряжаться каждый по своей цепи. Конденсатор С1 по цепи Rl, CI, R2, а конденсатор С2 по цепи R3, С2, R2. Поскольку постоянная времени второй цепи много меньше первой, сначала зарядится до напряжения источника питания конденсатор С2. По мере заряда конденсатора С1 транзистор VT1 начинает открываться и открывает транзистор VT2. Далее процесс открывания обеих транзисторов происходит лавинообразно. Сопротивление участка эмиттер-коллектор транзистора VT2 становится очень малым, и напряжение питания батареи GB1 оказывается приложенным к резистору R2. Благодаря элементам R3, С2, называемым схемой «вольтодобавки», заряженный до напряжения источника питания конденсатор С2 оказывается подключенным последовательно с гальваническим элементом и приложенное к светодиоду напряжение почти удваивается. В процессе разряда конденсатора С2 светодиод некоторое время светится, так как к нему приложено напряжение выше порогового. Конденсатор С1 также начинает разряжаться, что приводит к закрытию транзистора VT1, а вслед за ним и VT2. Процесс этот снова происходит лавинообразно, до надежного закрытия обоих транзисторов. Далее конденсаторы С1 и С2 опять начинают заряжаться и работа устройства повторяется, как это было описано выше.

Частота генерации зависит от сопротивления резисторов R1, R2, емкости конденсатора С1 и напряжения источника питания GB1. При указанных на схеме значениях указанных элементов она составляет около 1,3 Гц. Ток, потребляемый устройством от батареи, равен 0,12 мА. При питании от элемента АА данное устройство подобно «лампочке Пинк Флойдыча» (в свое время группа Pink Floyd выпустила компакт-диск с альбомом Pulse, в котором был встроен мигающий светодиод) - способно непрерывно работать в течение более одного года.

Рис. 2.3. Генератор световых импульсов на транзисторах

Светоизлучающий диод HL1 должен иметь рабочее напряжение менее 2 В. Можно использовать AJI112, AJI307A, AJI310, AJI316 (красный цвет свечения), AJI360 (зеленый цвет свечения).

Печатная плата и размещение элементов генератора световых импульсов на транзисторах приведены на рис. 2.4. Можно использовать транзисторы КТ315, КТ361 с любыми буквенными индексами. Конденсатор С1 типа К10-17, К10-47, оксидный С2 - К50-16, К50-35. В простых конструкциях, подобных этой, можно отказаться от печатного монтажа, выполнив его предварительно залуженным медным проводом толщиной 0,4…0,6 мм. Выводы деталей обрезают на расстоянии 3…4 мм от платы и вокруг каждого вывода делают 1-2 витка монтажного провода. Затем пропаивают витки паяльником. На выводы элементов, которые приподняты над платой (транзисторы VT1, VT2, светодиод HL1), надевают отрезки поливини лхлоридных трубочек, лучше разноцветных. Можно ввести свой «стандарт» маркировки элементов, например, для вывода эмиттера всегда использовать трубочки синего цвета, коллектора - красного, а базы - белого. Кстати, при монтаже располагайте элементы на плате так, чтобы надписи на них всегда можно было прочесть. Еще лучше, чтобы все надписи были обращены в одну сторону, например, слева направо.

Еще один генератор световых импульсов представляет собой формирователь прямоугольных импульсов на ОУ (рис. 2.5). Резисторы Rl, R2 образуют искусственную среднюю точку. Цепь отрицательной обратной связи образуют элементы R5, С1, а цепь положительной обратной связи - делитель R3, R4. Выходное напряжение генератора поступает на неинвер-

Рис. 2.5. Генератор световых импульсов на ОУ

тирующий вход через делитель R3, R4 с коэффициентом деления

Предположим, что на выходе ОУ имеется максимальное напряжение (по отношению к искусственной средней точке соединения резисторов Rl, R2), которое обозначим +ивых тах. С этого момента времени конденсатор С1 начинает заряжаться через резистор R5. ОУ работает в режиме компаратора (устройства сравнения), сравнивает напряжение на конденсаторе С1 с частью выходного напряжения

поданного на его неинвертирующий вход. До момента времени, пока напряжение на инвертирующем входе меньше, чем на неинвертирующем, выходное напряжение ОУ не изменяется. Как только оказывается превышенным порог переключения ОУ, выходное напряжение начинает уменьшаться, а положительная обратная связь через делитель R3, R4 придает этому процессу лавинообразный характер. Напряжение на выходе ОУ быстро достигает максимального отрицательного значения -ивых
шах- Процесс перезарядки конденсатора С1 пойдет в другую сторону. Как только напряжение на конденсаторе С1 станет более отрицательным, чем напряжение на резисторе R3 делителя R3, R4, ОУ вновь

Рис. 2.6. Печатная плата генератора световых импульсов на ОУ с размещением элементов

перейдет в состояние, при котором выходное напряжение станет положительным +Uвых mах. Далее процесс повторится. Таким образом, при генерировании колебаний конденсатор С1 периодически перезаряжается в диапазоне напряжений от +Uвых mахК до -Uвых mахК. Период колебаний мультивибратора равен

При R3= R4 период колебаний составляет Т ~ 2,2R5 С1.

Печатная плата и размещение элементов приведены на рис. 2.6. Кроме ОУ К553УД2 можно использовать К153УД2, а также многие другие ОУ, например, КР140УД608, КР140УД708. Место установки этих типов ОУ показано на рис. 2.6 штриховыми линиями. Поскольку указанные ОУ имеют внутренние цепи частотной коррекции, надобность в конденсаторе С2 в этом случае отпадает. Резисторы MJIT, С1-4, С2-10, С2-33 мощностью 0,125 или 0,25 Вт, конденсаторы КМ, КЛС, К10.

Учитывая, что в генераторе световых импульсов работают ОУ практически любого типа, можно изготовить своеобразный «тестер» для проверки ОУ. Интересное конструктивное исполнение такого устройства предложено в .

Третья схема генератора световых импульсов выполнена на цифровой KMOII-микросхеме. Она может найти применение в качестве имитатора охранной системы, в игрушках, схемах сигнализации режимов работы. Схема генератора световых импульсов приведена на рис. 2.7. Она состоит из генератора на элементах DD1.1, DDI.2 и включенных последовательно буферных элементов DD1.3, DDI.4. В силу невысокой нагрузочной

Рис. 2.7. Генератор световых импульсов на цифровой микросхеме

способности элементов КМОП в генераторе установлены усилители мощности на транзисторах VT1, VT2 и VT3, VT4. На выходах усилителей мощности наблюдаются импульсы противоположной полярности с частотой следования, определяемой частотозадающими элементами R2, С1 генератора. Частота генератора примерно равна Fr= 1,4 R2C1. При указанных на схеме элементах она составляет около 1 Гц.

Конденсатор С2 блокировочный по цепи питания устройства. Резистор R1 защищает вход микросхемы от перегрузок, резисторы R3, R4 определяют ток через светодиоды. В качестве примера на рис. 2.7 показаны четыре варианта подключения светодиодов к генератору световых импульсов, которые могут найти применение в конкретных конструкциях радиолюбителя. Для улучшения понимания принципа работы устройства конденсаторы СЗ, С4 изображены там, где они используются в работе.

Для первого и второго вариантов устанавливать транзисторы VT2, VT4 и конденсаторы СЗ, С4 не требуется. В первом варианте используются отдельные светодиоды любого цвета свечения, подключаемые анодом к выходам 1 и 2 генератора (либо только к одному из выходов). Наиболее широко распространенные светодиоды серии AJI307 имеют следующие цвета свечения в зависимости от индексов: К - красный, Р - оранжевый, М, Е - желтый, Г - зеленый.

Во втором варианте применен двухцветный светодиод AJIC331AM с отдельными выводами от кристаллов, который поочередно загорается зеленым и красным цветом.

Третий и четвертый варианты подключения рассчитаны на использование двухцветных светодиодов со встречно-параллельным включением. Здесь можно использовать светодиоды КИПД41 А-КИПД41М или любые из серии КИПД45.

В третьем варианте конденсаторы СЗ, С4 не устанавливаются, резистор R4 можно заменить перемычкой, а резистор R3 имеет номинал 470 Ом.

В четвертом варианте подключения сопротивление резисторов R3 и R4 составляет около 120 Ом. Подбором сопротивлений этих резисторов и выбором емкостей конденсаторов СЗ, С4 можно установить различную длительность вспышек светодиодов HL5, HL6. При увеличении емкости цвет свечения будет меняться скачком; при указанной на схеме наблюдаются короткие вспышки с поочередным изменением цвета свечения.

Печатная плата генератора световых импульсов и размещение деталей на ней показаны на рис. 2.8. В генераторе кроме указанной на схеме можно использовать аналогичную микросхему серии К1561. При изменении рисунка печатной платы можно применить и другие микросхемы серий К176, К561, К1561. Конденсатор С1 типа К10-17, К73, К78, остальное - К50-6, К50-16, К50-35. Резисторы MJIT, С2-33, С1-4. Транзисторы VT1, VT3 - любые из серий КТ315, КТ3102, a VT2, VT4 - из серий КТ361, КТ3107.

Налаживание генератора световых импульсов сводится к установке требуемой частоты переключения светодиодов, которая грубо может выбрана подбором конденсатора С1, а точнее - резистором R2. На время настройки частоты можно составить R2 из двух резисторов - переменного (1…2 мОм) и постоянного 100 кОм. После установки требуемой частоты генератора измеряют сопротивление цепочки из указанных резисторов и заменяют постоянным. Иногда требуется изменить яркость свечения светодиодов, которая выбирается подбором резисторов R3, R4. Необходимо следить за тем, чтобы не был превышен максимальный ток через светодиоды.

Дополнив предыдущий генератор несколькими деталями, удастся получить светодиодную «мигалку» (рис. 2.3).

Генератор работает следующим образом. При включении ис­точника питания конденсаторы С1 и С2 начинают заряжаться

Рис. 2.2. Печатная плата и размещение элементов звукового пробника

Рис. 2.3. Генератор световых импульсов на транзисторах

каждый по своей цепи. Конденсатор С1 по цепи R1, С1, R2, а конденса­тор С2 по цепи R3, С2, R2. Поскольку постоян­ная времени второй це­пи много меньше пер­вой, сначала зарядится до напряжения источ­ника питания конден­сатор С2. По мере заря­да конденсатора С1 транзистор VT1 начина­ет открываться и от­крывает транзистор VT2. Далее процесс от?срывания обеих транзисторов происходит лавинообразно. Сопротивление участ­ка эмиттер-коллектор транзистора VT2 становится очень ма­лым, и напряжение питания батареи GB1 оказывается прило­женным к резистору R2. Благодаря элементам R3, С2, называе­мым схемой «вольтодобавки», заряженный до напряжения ис­точника питания конденсатор С2 оказывается подключенным последовательно с гальваническим элементом и приложенное к светодиоду напряжение почти удваивается. В процессе разряда конденсатора С2 светодиод некоторое время светится, так как к нему приложено напряжение выше порогового. Конденсатор С1 также начинает разряжаться, что приводит к закрытию тран­зистора VT1, а вслед за ним и VT2. Процесс этот снова происхо­дит лавинообразно, до надежного закрытия обоих транзисто­ров. Далее конденсаторы С1 и С2 опять начинают заряжаться и работа устройства повторяется, как это было описано выше.

Частота генерации зависит от сопротивления резисторов R1, R2, емкости конденсатора С1 и напряжения источника питания GB1. При указанных на схеме значениях указанных элементов она составляет около 1,3 Гц. Ток, потребляемый устройством от батареи, равен 0,12 мА. При питании от элемента АА данное устройство подобно «лампочке Пинк Флойдыча» (в свое время группа Pink Floyd выпустила компакт-диск с альбомом Pulse, в котором был встроен мигающий светодиод) - способно непре­рывно работать в течение более одного года.

Светоизлучающий диод HL1 должен иметь рабочее напря­жение менее 2 В. Можно использовать АЛ112, АЛ307А, АЛ310, АЛ316 (красный цвет свечения), АЛ360 (зеленый цвет свечения).

Печатная плата и размещение элементов генератора свето­вых импульсов на транзисторах приведены на рис. 2.4. Можно использовать транзисторы КТ315, КТ361 с любыми буквенны­ми индексами. Конденсатор С1 типа К10-17, К10-47, ок­сидный С2 - К50-16, К50-35. В простых конструкциях, по­добных этой, можно отказать­ся от печатного монтажа, вы­полнив его предварительно за­луженным медным проводом толщиной 0,4…0,6 мм. Выво­ды деталей обрезают на рас­стоянии 3…4 мм от платы и вокруг каждого вывода дела­ют 1-2 витка монтажного провода. Затем пропаивают витки паяльником. На выво­ды элементов, которые при­подняты над платой (транзи­сторы VT1, VT2, светодиод HL1), надевают отрезки поли­вини лхлоридных трубочек, лучше разноцветных. Можно вве­сти свой «стандарт» маркировки элементов, например, для вывода эмиттера всегда использовать трубочки синего цвета, коллектора - красного, а базы - белого. Кстати, при монта­же располагайте элементы на плате так, чтобы надписи на них всегда можно было прочесть. Еще лучше, чтобы все надписи были обращены в одну сторону, например, слева направо.

Еще один генератор световых импульсов представляет со­бой формирователь прямоугольных импульсов на ОУ (рис. 2.5). Резисторы R1, R2 образуют искусственную среднюю точку. Цепь отрицательной обратной связи образуют элементы R5, С1, а цепь положительной обратной связи - делитель R3, R4. Выходное напряжение генератора поступает на неинвер-

%ис. 2.4. Печатная плата и размещение элементов генератора световых импульсов

Рис. 2.5. Генератор световых импульсов на ОУ

^еихмах г ^п, А = ^вых мах^^у ПОДаННОГО На вГО НвИНВерТИруЮ-

тирующий вход через делитель R3, R4 с коэффициентом де-ления К =-. Предположим, что на выходе ОУ имеет-

ся максимальное напряжение (по отношению к искусствен­ной средней точке соединения резисторов R1, R2), которое обозначим +Ubwx max- С этоГо момента времени конденсатор С1 начинает заряжаться через резистор R5. ОУ работает в режи­ме компаратора (устройства сравнения), сравнивает напряже­ние на конденсаторе С1 с частью выходного напряжения ДЗ

щий вход. До момента времени, пока напряжение на инверти­рующем входе меньше, чем на неинвертирующем, выходное напряжение ОУ не изменяется. Как только оказывается пре­вышенным порог переключения ОУ, выходное напряжение на­чинает уменьшаться, а положительная обратная связь через делитель R3, R4 придает этому процессу лавинообразный ха­рактер. Напряжение на выходе ОУ быстро достигает макси­мального отрицательного значения -Пвых max- Процесс переза­рядки конденсатора С1 пойдет в другую сторону. Как только напряжение на конденсаторе С1 станет более отрицательным, чем напряжение на резисторе R3 делителя R3, R4, ОУ вновь

Рис. 2.6. Печатная плата генератора световых импульсов на ОУ с размещением элементов

перейдет в состояние, при котором выходное напряжение ста­нет положительным +Ubwx max- Далес процесс повторится. Та­ким образом, при генерировании колебаний конденсатор С1 периодически перезаряжается в диапазоне напряжений от +Ubwx maxK ДО -Пвых тахК. Период колебаний мультивибратора равен Т = = 2Д5С11п. При R3-= R4 период колебаний составляет Т = 2,2R5 С1.

Печатная плата и размещение элементов приведены на рис. 2.6. Кроме ОУ К553УД2 можно использовать К153УД2, а также многие другие ОУ, например, КР140УД608, КР140УД708. Место установки этих типов ОУ показано на рис. 2.6 штриховыми линиями. Поскольку указанные ОУ име­ют внутренние цепи частотной коррекции, надобность в кон­денсаторе С2 в этом случае отпадает. Резисторы МЛТ, С1-4, С2-10, С2-33 мощностью 0,125 или 0,25 Вт, конденсаторы КМ, КЛС, К10.

Учитывая, что в генераторе световых импульсов работают ОУ практически любого типа, можно изготовить своеобразный «тестер» для проверки ОУ. Интересное конструктивное испол­нение такого устройства предложено в .

Третья схема генератора световых импульсов выполнена на цифровой КМОП-микроохеме. Она может найти применение в качестве имитатора охранной системы, в игрушках, схемах сигнализации режимов работы. Схема генератора световых им­пульсов приведена на рис. 2.7. Она состоит из генератора на элементах DD1.1, DDI.2 и включенных последовательно буфер­ных элементов DD1.3, DDI.4. В силу невысокой нагрузочной

способности элементов КМОП в генераторе установлены усили­тели мощности на транзисторах VT1, VT2 и VT3, VT4. На вы­ходах усилителей мощности наблюдаются импульсы противо­положной полярности с частотой следования, определяемой частотозадающими элементами R2, С1 генератора. Частота ге­нератора примерно равна Fr= 1,4 R2C1. При указанных на схе­ме элементах она составляет около 1 Гц.

Конденсатор С2 блокировочный по цепи питания устройства. Резистор R1 защищает вход микросхемы от перегрузок, рези­сторы R3, R4 определяют ток через светодиоды. В качестве при­мера на рис. 2.7 показгшы четыре варианта подключения свето-диодов к генератору световых импульсов, которые могут найти применение в конкретных конструкциях радиолюбителя. Для улучшения понимания принципа работы устройства конденса­торы СЗ, С4 изображены там, где они используются в работе.

Для первого и второго вариантов устанавливать транзисто­ры VT2, VT4 и конденсаторы СЗ, С4 не требуется. В первом ва­рианте используются отдельные светодиоды любого цвета све­чения, подключаемые анодом к выходам 1 и 2 генератора (ли­бо только к одному из выходов). Наиболее широко распростра­ненные светодиоды серии АЛ307 имеют следующие цвета свечения в зависимости от индексов: К - красный, Р - оран­жевый, М, Е - желтый, Г - зеленый.

Во втором варианте применен двухцветный светодиод АЛС331АМ с отдельными выводами от кристаллов, который поочередно загорается зеленым и красным цветом.

Третий и четвертый варианты подключения рассчитаны на использование двухцветных светодиодов со встречно-парал­лельным включением. Здесь можно использовать светодиоды КИПД41А-КИПД41М или любые из серии КИПД45.

В третьем варианте конденсаторы СЗ, С4 не устанавливают­ся, резистор R4 можно заменить перемычкой, а резистор R3 имеет номинал 470 Ом.

В четвертом варианте подключения сопротивление резисто­ров R3 и R4 составляет около 120 Ом. Подбором сопротивле­ний этих резисторов и выбором емкостей конденсаторов СЗ, С4 можно установить различную длительность вспышек светодио­дов HL5, HL6. При увеличении емкости цвет свечения будет меняться скачком; при указанной на схеме наблюдаются ко­роткие вспышки с поочередным изменением цвета свечения.

Печатная плата генератора световых импульсов и размеще­ние деталей на ней показаны на рис. 2.8. В генераторе кроме указанной на схеме можно использовать аналогичную микро­схему серии К1561. При изменении рисунка печатной платы можно применить и другие микросхемы серий К176, К561, К1561. Конденсатор С1 типа К10-17, К73, К78, остальнй[е - К50-6, К50-16, К50-35. Резисторы МЛТ, С2-33, С1-4. Транзи­сторы VT1, VT3 - любые из серий КТ315, КТ3102, а VT2, VT4 - из серий КТ361, КТ3107.

Рис. 2.8. Печатная плата и размещение элементов генератора световых импульсов на цифровой микросхеме

Налаживание генератора световых импульсов сводится к установке требуемой частоты переключения светодиодов, кото­рая грубо может выбрана подбором конденсатора С1, а точ­нее - резистором R2. На время настройки частоты можно со­ставить R2 из двух резисторов - переменного (1…2 мОм) и постоянного 100 кОм. После установки требуемой частоты ге­нератора измеряют сопротивление цепочки из указанных ре­зисторов и заменяют постоянным. Иногда требуется изменить яркость свечения светодиодов, которая выбирается подбором резисторов R3, R4. Необходимо следить за тем, чтобы не был превышен максимальный ток через светодиоды.

Генераторы импульсов на мигающем светодиоде

В каталогах зарубежных фирм, производящих полупроводниковые приборы и торгующих ими, появились так называемые "Blinking LED Lamps" - светодиоды, на вид обычные, но при поднлючении к источнику постоянного напряжения вспыхивающие и гаснущие примерно два раза в секунду. Эти приборы нередко можно приобрести на радиорынках. В предлагаемой статье описаны несколько простых устройств, в которых "мигающий" све-тодиод служит генератором не только световых, но и электрических импульсов.

Прежде всего ответим на вопрос, почему такой светодиод мигает? Внутри него, как показано на схеме (рис. 1), кроме собственно светоизлучающей полупроводниковой структуры HL1, находятся генератор импульсов и электронный ключ. Иногда предусмотрен гасящий резистор R1, в других случаях его функции выполняет внутреннее сопротивление ключа. Диод VD1 защищает устройство от подачи питающего напряжения обратной полярности.

Кстати, именно этот диод бывает причиной выхода прибора из строя. Часто случается, что, проверяя светодиод, сравнительно мощную батарею напряжением 9 В подключают к нему, перепутав полярность. В результате ток силой в сотни миллиампер разогревает защитный диод до температуры, опасной не только для него самого, но и для других компонентов прибора. Поэтому при проверке светодиода последовательно с ним необходимо включить резистор сопротивлением 100...200 Ом. В процессе эксплуатации, когда приложенное к светодиоду напряжение имеет правильную полярность и находится в допустимых пределах, дополнительный резистор не нужен.

Наиболее распространены "мигающие" светодиоды серий V621, V622, V623 (фирмы Diverse); LTL 4213,LTL 4223, LTL 4233 (Lite On Opto); TLBG5410, TLBR5410, TLBY5410 (Temic Telefunken); L-36, L-56, L-616, L-796, L-816 (Kingbright Reinhold). По внешнему виду они напоминают обычный АЛ307БМ, имеют корпус диаметром 3...10 мм, угол обзора 40...1400, цвет свечения - красный, оранжевый, желтый или зеленый. Типичные их параметры следующие: рабочее напряжение - 3,5... 13 В, максимальный прямой ток - 60...70 мА, максимальная рассеиваемая мощность - 200 мВт, частота вспышек - 1,5...2,5 (иногда до 5 Гц), яркость - 1,3... 1000 мкд.

В светящемся состоянии свойства "мигающего" светодиода подобны обыкновенному. Экспериментально снятый начальный участок его вольт-амперной характеристики показан на рис. 2 (кривая 1). В интервалах между вспышками "светодиодная" цепь разорвана и при том же напряжении ток, протекающий через прибор, значительно меньше, так как его потребляет только внутренний генератор. Этому состоянию соответствует кривая 2.

Если последовательно с "мигающим" светодиодом включить резистор, падение напряжения на нем будет изменяться в такт со вспышками. С помошью осциллографа можно убедиться, что генерация продолжается даже при увеличении сопротивления резистора до значения, при котором вспышек света уже не видно. Проведенная на рис. 2 нагрузочная прямая (3) соответствует резистору сопротивлением 33 кОм и напряжению питания 5 В. Разность падений напряжения на резисторе во время вспышки и паузы AU превышает 2 В. Этого достаточно, например, для срабатывания логического элемента.

Устройства, схемы которых приведены на рис. 3 и 4, по аналогии с RC-генераторами можно было бы назвать RHL-генераторами. Типы светодиодов и логических элементов на схемах не указаны, так как были проверены и устойчиво работали самые разные их комбинации. Длительность высокого логического уровня на выходе - 280...320, низкого - 340...370 мс. Эти значения в небольших пределах зависят от сопрогивления резистора R1 и типа применяемого логического элемента. В устройстве по схеме на рис. 3 интервал возможных сопротивлений резистора R1 в килоомах при использовании микросхем указанных в скобках серий составляет 0,1... 1,8 (К155). 0,1...5,6 (К555). 0,15...30 (КР1533) или 0,15...91 (К561). При приближении сопротивления к одному из граничных значений полному срыву колебаний часто предшествует "дребезг" - генерация пачек коротких импульсов на фронтах основных. В генераторе по схеме рис. 4 могут работать только микросхемы структуры КМОП (серии К561 и подобные), а сопротивление R1 должно находиться в пределах 0,8...300 кОм.

На рис. 5 показана схема экономичного генератора пачек импульсов, содержащего всего один логический элемент - триггер Шмитта. Во время вспышки "мигающего" светодиода HL1 уровень напряжения на входе 1 элемента DD1.1 соответствует логическому 0. В паузе между вспышками это напряжение увеличивается до уровня логической 1 и начинает работать RC-генератор. образованный элементами R2, C1, DD1.1. На выходе можно наблюдать пачки импульсов, следующие с частотой вспышек светодиода. Сигнал можно услышать, подключив к выходу генератора акустический преобразователь BF1, например, пьезоизлучатель ЗП - 1, ЗП - 19 или ЗП - 22. Указанным на схеме номиналам элементов соответствуют частота импульсов в пачке 2 кГц. период повторения пачек - 500. а длительность каждой из них - 230 мс. При увеличении сопротивления резистора R1 от 620 Ом до 150 кОм период повторения пачек возрастает с 450 до 600 мс, а частота их заполнения уменьшается с 2,2 до 1,5 кГц. Можно подобрать такое сопротивление (приблизительно 135 кОм). при котором генерируется последовательное мелодичное трезвучие. Поменяв местами R1 и HL1, подбором того же резистора добиваются такого интересного эффекта, как "глиссандо" - плавного изменения высоты звука.

Следует иметь в виду, что у всех рассмотренных здесь генераторов при больших номиналах нагрузочного резистора яркость световых импульсов уменьшается настолько, что они становятся невидимы. Однако генерация электрических импульсов продолжается.

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

Готовые мигающие светодиоды и схемы с их использованием

Среди многообразия готовых мигающих светодиодов, наиболее распространены изделия в 5-ти мм корпусе. Помимо готовых одноцветных мигающих светодиодов, существуют двухвыводные экземпляры с двумя или тремя кристаллами разного цвета. У них в одном корпусе с кристаллами встроен генератор, который работает на определенной частоте. Он выдает одиночные чередующиеся импульсы на каждый кристалл по заданной программе. Скорость мерцания (частота) зависит от заданной программы. При одновременном свечении двух кристаллов мигающий светодиод выдает промежуточный цвет. Вторыми по популярности являются мигающие светоизлучающие диоды, управляемые током (уровнем потенциала). То есть, чтобы заставить мигать светодиод данного типа нужно менять питание на соответствующих выводах. Например, цвет излучения двуцветного красно-зелёного светодиода с двумя выводами зависит от направления протекания тока.

Трёхцветный (RGB) мигающий светодиод с четырьмя выводами имеет общий анод (катод) и три вывода для управления каждым цветом отдельно. Эффект мигания достигается путём подключения к соответствующей системе управления.

Смастерить мигалку на основе готового мигающего светодиода достаточно легко. Для этого потребуется батарейка CR2032 или CR2025 и резистор на 150–240 Ом, который следует припаять на любой вывод. Соблюдая полярность светодиода, контакты подключаются к батарейке. Светодиодная мигалка готова, можно наслаждаться визуальным эффектом. Если использовать батарейку типа «крона», основываясь на законе Ома, следует подобрать резистор большего сопротивления.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

В обоих вариантах можно применить транзисторы pnp проводимости, но с коррекцией схемы подключения.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Следует помнить, что питания от 3В будет недостаточно, чтобы зажечь светодиод с высоким значением прямого напряжения. Например, для светодиода белого, синего или зелёного цвета потребуется большее напряжение.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода. Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы.

Область применения

Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

Читайте так же

Электронные устройства

С. РЮМИК, г. Чернигов, Украина
Радио, 2000 год, №2

В каталогах зарубежных фирм, производящих полупроводниковые приборы и торгующих ими, появились так называемые "Blinking LED Lamps " - светодиоды, на вид обычные, но при подключении к источнику постоянного напряжения вспыхивающие и гаснущие примерно два раза в секунду. Эти приборы нередко можно приобрести на радиорынках. В предлагаемой статье описаны несколько простых устройств, в которых "мигающий" светодиод служит генератором не только световых, но и электрических импульсов.

Прежде всего ответим на вопрос, почему такой светодиод мигает ? Внутри него, как показано на схеме (рис. 1), кроме собственно светоизлучающей полупроводниковой структуры HL1, находятся генератор импульсов и электронный ключ. Иногда предусмотрен гасящий резистор R1, в других случаях его функции выполняет внутреннее сопротивление ключа. Диод VD1 защищает устройство от подачи питающего напряжения обратной полярности.

Кстати, именно этот диод бывает причиной выхода прибора из строя. Часто случается, что, проверяя светодиод, сравнительно мощную батарею напряжением 9 В подключают к нему, перепутав полярность. В результате ток силой в сотни миллиампер разогревает защитный диод до температуры, опасной не только для него самого, но и для других компонентов прибора. Поэтому при проверке светодиода последовательно с ним необходимо включить резистор сопротивлением 100...200 Ом. В процессе эксплуатации, когда приложенное к светодиоду напряжение имеет правильную полярность и находится в допустимых пределах, дополнительный резистор не нужен.

Для увеличения кликните по изображению (откроется в новом окне)

Наиболее распространены "мигающие" светодиоды серий V621, V622, V623 (фирмы Diverse); LTL 4213,LTL 4223, LTL 4233 (Lite On Opto); TLBG5410, TLBR5410, TLBY5410 (Temic Telefunken); L-36, L-56, L-616, L-796, L-816 (Kingbright Reinhold). По внешнему виду они напоминают обычный АЛ307БМ, имеют корпус диаметром 3...10 мм, угол обзора 40...1400, цвет свечения - красный, оранжевый, желтый или зеленый. Типичные их параметры следующие: рабочее напряжение - 3,5... 13 В, максимальный прямой ток - 60...70 мА, максимальная рассеиваемая мощность - 200 мВт, частота вспышек - 1,5...2,5 (иногда до 5 Гц), яркость - 1,3... 1000 мкд.

В светящемся состоянии свойства "мигающего" светодиода подобны обыкновенному. Экспериментально снятый начальный участок его вольт-амперной характеристики показан на рис. 2 (кривая 1). В интервалах между вспышками "светодиодная" цепь разорвана и при том же напряжении ток, протекающий через прибор, значительно меньше, так как его потребляет только внутренний генератор. Этому состоянию соответствует кривая 2.

Если последовательно с "мигающим" светодиодом включить резистор, падение напряжения на нем будет изменяться в такт со вспышками. С помошью осциллографа можно убедиться, что генерация продолжается даже при увеличении сопротивления резистора до значения, при котором вспышек света уже не видно. Проведенная на рис. 2 нагрузочная прямая (3) соответствует резистору сопротивлением 33 кОм и напряжению питания 5 В. Разность падений напряжения на резисторе во время вспышки и паузы AU превышает 2 В. Этого достаточно, например, для срабатывания логического элемента.

Устройства, схемы которых приведены на рис. 3 и 4, по аналогии с RC-генераторами можно было бы назвать RHL-генераторами. Типы светодиодов и логических элементов на схемах не указаны, так как были проверены и устойчиво работали самые разные их комбинации. Длительность высокого логического уровня на выходе - 280...320, низкого - 340...370 мс. Эти значения в небольших пределах зависят от сопрогивления резистора R1 и типа применяемого логического элемента. В устройстве по схеме на рис. 3 интервал возможных сопротивлений резистора R1 в килоомах при использовании микросхем указанных в скобках серий составляет 0,1... 1,8 (К155). 0,1...5,6 (К555). 0,15...30 (КР1533) или 0,15...91 (К561). При приближении сопротивления к одному из граничных значений полному срыву колебаний часто предшествует "дребезг" - генерация пачек коротких импульсов на фронтах основных. В генераторе по схеме рис. 4 могут работать только микросхемы структуры КМОП (серии К561 и подобные), а сопротивление R1 должно находиться в пределах 0,8...300 кОм.

На рис. 5 показана схема экономичного генератора пачек импульсов, содержащего всего один логический элемент - триггер Шмитта. Во время вспышки "мигающего" светодиода HL1 уровень напряжения на входе 1 элемента DD1.1 соответствует логическому 0. В паузе между вспышками это напряжение увеличивается до уровня логической 1 и начинает работать RC-генератор. образованный элементами R2, C1, DD1.1. На выходе можно наблюдать пачки импульсов, следующие с частотой вспышек светодиода. Сигнал можно услышать, подключив к выходу генератора акустический преобразователь BF1, например, пьезоизлучатель ЗП - 1, ЗП - 19 или ЗП - 22. Указанным на схеме номиналам элементов соответствуют частота импульсов в пачке 2 кГц. период повторения пачек - 500. а длительность каждой из них - 230 мс. При увеличении сопротивления резистора R1 от 620 Ом до 150 кОм период повторения пачек возрастает с 450 до 600 мс, а частота их заполнения уменьшается с 2,2 до 1,5 кГц. Можно подобрать такое сопротивление (приблизительно 135 кОм). при котором генерируется последовательное мелодичное трезвучие. Поменяв местами R1 и HL1, подбором того же резистора добиваются такого интересного эффекта, как "глиссандо" - плавного изменения высоты звука.

Следует иметь в виду, что у всех рассмотренных здесь генераторов при больших номиналах нагрузочного резистора яркость световых импульсов уменьшается настолько, что они становятся невидимы. Однако генерация электрических импульсов продолжается.